78953
If \(A\) is a square matrix of order 3 and \(|A|=5\), then \(\mid \mathbf{A}\) adj \(\mathbf{A} \mid\) is
1 125
2 25
3 625
4 5
Explanation:
(A) : We have, \(|A|=5\) We know that, \(\quad|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}\) (where, \(\mathrm{n}\) is the order of matrix) \(|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{3-1}=5^{2}=25\) \(\therefore \quad \mid \mathrm{A}\) adj \(\mathrm{A} \mid=5 \times 25=125\)
Karnataka CET-2020
Matrix and Determinant
78954
The inverse of the matrix \(\left[\begin{array}{ccc}2 & 5 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3\end{array}\right]\) is
78955
If \(A=\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) and \(A+A^{T}=I\), where \(I\) is the unit matrix of \(2 \times 2 \& A^{T}\) is the transpose of \(A\), then the value of \(\theta\) is equal to
78953
If \(A\) is a square matrix of order 3 and \(|A|=5\), then \(\mid \mathbf{A}\) adj \(\mathbf{A} \mid\) is
1 125
2 25
3 625
4 5
Explanation:
(A) : We have, \(|A|=5\) We know that, \(\quad|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}\) (where, \(\mathrm{n}\) is the order of matrix) \(|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{3-1}=5^{2}=25\) \(\therefore \quad \mid \mathrm{A}\) adj \(\mathrm{A} \mid=5 \times 25=125\)
Karnataka CET-2020
Matrix and Determinant
78954
The inverse of the matrix \(\left[\begin{array}{ccc}2 & 5 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3\end{array}\right]\) is
78955
If \(A=\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) and \(A+A^{T}=I\), where \(I\) is the unit matrix of \(2 \times 2 \& A^{T}\) is the transpose of \(A\), then the value of \(\theta\) is equal to
78953
If \(A\) is a square matrix of order 3 and \(|A|=5\), then \(\mid \mathbf{A}\) adj \(\mathbf{A} \mid\) is
1 125
2 25
3 625
4 5
Explanation:
(A) : We have, \(|A|=5\) We know that, \(\quad|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}\) (where, \(\mathrm{n}\) is the order of matrix) \(|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{3-1}=5^{2}=25\) \(\therefore \quad \mid \mathrm{A}\) adj \(\mathrm{A} \mid=5 \times 25=125\)
Karnataka CET-2020
Matrix and Determinant
78954
The inverse of the matrix \(\left[\begin{array}{ccc}2 & 5 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3\end{array}\right]\) is
78955
If \(A=\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) and \(A+A^{T}=I\), where \(I\) is the unit matrix of \(2 \times 2 \& A^{T}\) is the transpose of \(A\), then the value of \(\theta\) is equal to
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Matrix and Determinant
78953
If \(A\) is a square matrix of order 3 and \(|A|=5\), then \(\mid \mathbf{A}\) adj \(\mathbf{A} \mid\) is
1 125
2 25
3 625
4 5
Explanation:
(A) : We have, \(|A|=5\) We know that, \(\quad|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}\) (where, \(\mathrm{n}\) is the order of matrix) \(|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{3-1}=5^{2}=25\) \(\therefore \quad \mid \mathrm{A}\) adj \(\mathrm{A} \mid=5 \times 25=125\)
Karnataka CET-2020
Matrix and Determinant
78954
The inverse of the matrix \(\left[\begin{array}{ccc}2 & 5 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3\end{array}\right]\) is
78955
If \(A=\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) and \(A+A^{T}=I\), where \(I\) is the unit matrix of \(2 \times 2 \& A^{T}\) is the transpose of \(A\), then the value of \(\theta\) is equal to
78953
If \(A\) is a square matrix of order 3 and \(|A|=5\), then \(\mid \mathbf{A}\) adj \(\mathbf{A} \mid\) is
1 125
2 25
3 625
4 5
Explanation:
(A) : We have, \(|A|=5\) We know that, \(\quad|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}\) (where, \(\mathrm{n}\) is the order of matrix) \(|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{3-1}=5^{2}=25\) \(\therefore \quad \mid \mathrm{A}\) adj \(\mathrm{A} \mid=5 \times 25=125\)
Karnataka CET-2020
Matrix and Determinant
78954
The inverse of the matrix \(\left[\begin{array}{ccc}2 & 5 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3\end{array}\right]\) is
78955
If \(A=\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) and \(A+A^{T}=I\), where \(I\) is the unit matrix of \(2 \times 2 \& A^{T}\) is the transpose of \(A\), then the value of \(\theta\) is equal to