Adjoint and Inverse of Matrices
Matrix and Determinant

78778 Inverse of the matrix \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) is :

1 \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]\)
3 \(\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
4 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]\)
Matrix and Determinant

78779 If \(A\) and \(B\) are invertible matrices, then which of the following is not correct?

1 \(\operatorname{adj} \mathrm{A}=|\mathrm{A}|^{-1}\)
2 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)=[\operatorname{det}(\mathrm{A})]^{-1}\)
3 \((\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}\)
4 \((\mathrm{A}+\mathrm{B})^{-1}=\mathrm{B}^{-1}+\mathrm{A}^{-1}\)
Matrix and Determinant

78780 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{4}\) is equal to

1 \(2 \mathrm{~A}\)
2 I
3 \(4 \mathrm{~A}\)
4 A
Matrix and Determinant

78781 If \(A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\), then \(A_{A}=\)

1 A
2 zero matrix
3 \(\mathrm{A}^{\prime}\)
4 I
Matrix and Determinant

78782 If \(\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]\), then the values of \(x\) and \(y\) respectively are

1 \(–3, –1\)
2 \(1, 3\)
3 \(3,1\)
4 \(-1,3\)
Matrix and Determinant

78778 Inverse of the matrix \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) is :

1 \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]\)
3 \(\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
4 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]\)
Matrix and Determinant

78779 If \(A\) and \(B\) are invertible matrices, then which of the following is not correct?

1 \(\operatorname{adj} \mathrm{A}=|\mathrm{A}|^{-1}\)
2 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)=[\operatorname{det}(\mathrm{A})]^{-1}\)
3 \((\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}\)
4 \((\mathrm{A}+\mathrm{B})^{-1}=\mathrm{B}^{-1}+\mathrm{A}^{-1}\)
Matrix and Determinant

78780 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{4}\) is equal to

1 \(2 \mathrm{~A}\)
2 I
3 \(4 \mathrm{~A}\)
4 A
Matrix and Determinant

78781 If \(A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\), then \(A_{A}=\)

1 A
2 zero matrix
3 \(\mathrm{A}^{\prime}\)
4 I
Matrix and Determinant

78782 If \(\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]\), then the values of \(x\) and \(y\) respectively are

1 \(–3, –1\)
2 \(1, 3\)
3 \(3,1\)
4 \(-1,3\)
Matrix and Determinant

78778 Inverse of the matrix \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) is :

1 \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]\)
3 \(\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
4 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]\)
Matrix and Determinant

78779 If \(A\) and \(B\) are invertible matrices, then which of the following is not correct?

1 \(\operatorname{adj} \mathrm{A}=|\mathrm{A}|^{-1}\)
2 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)=[\operatorname{det}(\mathrm{A})]^{-1}\)
3 \((\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}\)
4 \((\mathrm{A}+\mathrm{B})^{-1}=\mathrm{B}^{-1}+\mathrm{A}^{-1}\)
Matrix and Determinant

78780 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{4}\) is equal to

1 \(2 \mathrm{~A}\)
2 I
3 \(4 \mathrm{~A}\)
4 A
Matrix and Determinant

78781 If \(A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\), then \(A_{A}=\)

1 A
2 zero matrix
3 \(\mathrm{A}^{\prime}\)
4 I
Matrix and Determinant

78782 If \(\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]\), then the values of \(x\) and \(y\) respectively are

1 \(–3, –1\)
2 \(1, 3\)
3 \(3,1\)
4 \(-1,3\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78778 Inverse of the matrix \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) is :

1 \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]\)
3 \(\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
4 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]\)
Matrix and Determinant

78779 If \(A\) and \(B\) are invertible matrices, then which of the following is not correct?

1 \(\operatorname{adj} \mathrm{A}=|\mathrm{A}|^{-1}\)
2 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)=[\operatorname{det}(\mathrm{A})]^{-1}\)
3 \((\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}\)
4 \((\mathrm{A}+\mathrm{B})^{-1}=\mathrm{B}^{-1}+\mathrm{A}^{-1}\)
Matrix and Determinant

78780 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{4}\) is equal to

1 \(2 \mathrm{~A}\)
2 I
3 \(4 \mathrm{~A}\)
4 A
Matrix and Determinant

78781 If \(A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\), then \(A_{A}=\)

1 A
2 zero matrix
3 \(\mathrm{A}^{\prime}\)
4 I
Matrix and Determinant

78782 If \(\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]\), then the values of \(x\) and \(y\) respectively are

1 \(–3, –1\)
2 \(1, 3\)
3 \(3,1\)
4 \(-1,3\)
Matrix and Determinant

78778 Inverse of the matrix \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) is :

1 \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]\)
3 \(\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)
4 \(\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]\)
Matrix and Determinant

78779 If \(A\) and \(B\) are invertible matrices, then which of the following is not correct?

1 \(\operatorname{adj} \mathrm{A}=|\mathrm{A}|^{-1}\)
2 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)=[\operatorname{det}(\mathrm{A})]^{-1}\)
3 \((\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}\)
4 \((\mathrm{A}+\mathrm{B})^{-1}=\mathrm{B}^{-1}+\mathrm{A}^{-1}\)
Matrix and Determinant

78780 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{4}\) is equal to

1 \(2 \mathrm{~A}\)
2 I
3 \(4 \mathrm{~A}\)
4 A
Matrix and Determinant

78781 If \(A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\), then \(A_{A}=\)

1 A
2 zero matrix
3 \(\mathrm{A}^{\prime}\)
4 I
Matrix and Determinant

78782 If \(\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]\), then the values of \(x\) and \(y\) respectively are

1 \(–3, –1\)
2 \(1, 3\)
3 \(3,1\)
4 \(-1,3\)