78641
If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)
78641
If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)
78641
If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)
78641
If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)
78641
If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)