Product of Matrices and its Properties
Matrix and Determinant

78637 If \(A\) and \(B\) are two matrices such that \(A B=B\) and \(B A=A\) then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78638 \(G=\left\{\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right): \theta \in \mathbf{R}\right\}\) is a group under matrix multiplication. Then which one of the following statements in respect of \(G\) is true.

1 \(\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\) is the inverse of itself
2 \(\mathrm{G}\) is a finite group
3 \(\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)\) is not an element of \(G\)
4 \(\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\) is an element of G.
Matrix and Determinant

78639 If \(A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]\) then \((A B)^{T}\) is equal to

1 \(\left[\begin{array}{ll}-3 & -2 \\ 10 & 7\end{array}\right]\)
2 \(\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]\)
3 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & -2\end{array}\right]\)
Matrix and Determinant

78641 If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)

1 \(32 \mathrm{k}^{2}\)
2 \(16 \mathrm{k}^{2}\)
3 \(64 \mathrm{k}^{2}\)
4 \(48 \mathrm{k}^{2}\)
Matrix and Determinant

78642 If \(2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]\) then the value of \(x\)

1 \(x=3, y=3\)
2 \(x=-3, y=3\)
3 \(x=3, y=-3\)
4 \(x=-3, y=-3\)
Matrix and Determinant

78637 If \(A\) and \(B\) are two matrices such that \(A B=B\) and \(B A=A\) then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78638 \(G=\left\{\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right): \theta \in \mathbf{R}\right\}\) is a group under matrix multiplication. Then which one of the following statements in respect of \(G\) is true.

1 \(\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\) is the inverse of itself
2 \(\mathrm{G}\) is a finite group
3 \(\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)\) is not an element of \(G\)
4 \(\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\) is an element of G.
Matrix and Determinant

78639 If \(A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]\) then \((A B)^{T}\) is equal to

1 \(\left[\begin{array}{ll}-3 & -2 \\ 10 & 7\end{array}\right]\)
2 \(\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]\)
3 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & -2\end{array}\right]\)
Matrix and Determinant

78641 If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)

1 \(32 \mathrm{k}^{2}\)
2 \(16 \mathrm{k}^{2}\)
3 \(64 \mathrm{k}^{2}\)
4 \(48 \mathrm{k}^{2}\)
Matrix and Determinant

78642 If \(2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]\) then the value of \(x\)

1 \(x=3, y=3\)
2 \(x=-3, y=3\)
3 \(x=3, y=-3\)
4 \(x=-3, y=-3\)
Matrix and Determinant

78637 If \(A\) and \(B\) are two matrices such that \(A B=B\) and \(B A=A\) then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78638 \(G=\left\{\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right): \theta \in \mathbf{R}\right\}\) is a group under matrix multiplication. Then which one of the following statements in respect of \(G\) is true.

1 \(\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\) is the inverse of itself
2 \(\mathrm{G}\) is a finite group
3 \(\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)\) is not an element of \(G\)
4 \(\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\) is an element of G.
Matrix and Determinant

78639 If \(A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]\) then \((A B)^{T}\) is equal to

1 \(\left[\begin{array}{ll}-3 & -2 \\ 10 & 7\end{array}\right]\)
2 \(\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]\)
3 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & -2\end{array}\right]\)
Matrix and Determinant

78641 If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)

1 \(32 \mathrm{k}^{2}\)
2 \(16 \mathrm{k}^{2}\)
3 \(64 \mathrm{k}^{2}\)
4 \(48 \mathrm{k}^{2}\)
Matrix and Determinant

78642 If \(2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]\) then the value of \(x\)

1 \(x=3, y=3\)
2 \(x=-3, y=3\)
3 \(x=3, y=-3\)
4 \(x=-3, y=-3\)
Matrix and Determinant

78637 If \(A\) and \(B\) are two matrices such that \(A B=B\) and \(B A=A\) then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78638 \(G=\left\{\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right): \theta \in \mathbf{R}\right\}\) is a group under matrix multiplication. Then which one of the following statements in respect of \(G\) is true.

1 \(\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\) is the inverse of itself
2 \(\mathrm{G}\) is a finite group
3 \(\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)\) is not an element of \(G\)
4 \(\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\) is an element of G.
Matrix and Determinant

78639 If \(A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]\) then \((A B)^{T}\) is equal to

1 \(\left[\begin{array}{ll}-3 & -2 \\ 10 & 7\end{array}\right]\)
2 \(\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]\)
3 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & -2\end{array}\right]\)
Matrix and Determinant

78641 If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)

1 \(32 \mathrm{k}^{2}\)
2 \(16 \mathrm{k}^{2}\)
3 \(64 \mathrm{k}^{2}\)
4 \(48 \mathrm{k}^{2}\)
Matrix and Determinant

78642 If \(2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]\) then the value of \(x\)

1 \(x=3, y=3\)
2 \(x=-3, y=3\)
3 \(x=3, y=-3\)
4 \(x=-3, y=-3\)
Matrix and Determinant

78637 If \(A\) and \(B\) are two matrices such that \(A B=B\) and \(B A=A\) then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78638 \(G=\left\{\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right): \theta \in \mathbf{R}\right\}\) is a group under matrix multiplication. Then which one of the following statements in respect of \(G\) is true.

1 \(\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\) is the inverse of itself
2 \(\mathrm{G}\) is a finite group
3 \(\left(\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)\) is not an element of \(G\)
4 \(\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\) is an element of G.
Matrix and Determinant

78639 If \(A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]\) then \((A B)^{T}\) is equal to

1 \(\left[\begin{array}{ll}-3 & -2 \\ 10 & 7\end{array}\right]\)
2 \(\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]\)
3 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}-3 & 7 \\ 10 & -2\end{array}\right]\)
Matrix and Determinant

78641 If \(\left(x_{1}, y_{1}\right),\left(y_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are the vertices of a triangle whose area is \(k\) square units, then
\(\left|\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{y}_{1} & 4 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 4 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 4 \end{array}\right|^{2} \text { is }\)

1 \(32 \mathrm{k}^{2}\)
2 \(16 \mathrm{k}^{2}\)
3 \(64 \mathrm{k}^{2}\)
4 \(48 \mathrm{k}^{2}\)
Matrix and Determinant

78642 If \(2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]\) then the value of \(x\)

1 \(x=3, y=3\)
2 \(x=-3, y=3\)
3 \(x=3, y=-3\)
4 \(x=-3, y=-3\)