Matrices and Their Types
Matrix and Determinant

78449 If a matrix \(A\) is both symmetric and skew symmetric, then

1 A is diagonal matrix
2 A is a zero matrix
3 A is scalar matrix
4 A is square matrix
Matrix and Determinant

78450 If \(A\) and \(B\) are square matrices of order ' \(n\) ' such that \(A^{2}-B^{2}=(A-B)(A+B)\), then which of the following will be true?

1 Either of A or B is zero matrix.
2 \(\mathrm{A}=\mathrm{B}\)
3 \(\mathrm{AB}=\mathrm{BA}\)
4 Either of \(\mathrm{A}\) or \(\mathrm{B}\) is an identity matrix.
Matrix and Determinant

78451 \(\quad\left[\begin{array}{lll}\sin \alpha & \cos \alpha & \sin (\alpha+\delta) \\ \sin \beta & \cos \beta & \sin (\beta+\delta) \\ \sin \gamma & \cos \gamma & \sin (\gamma+\delta)\end{array}\right]=\) \(\sin \gamma \quad \cos \gamma \quad \sin (\gamma+\delta)]\)

1 0
2 1
3 \(1+\sin \alpha \sin \beta \sin \gamma\)
4 \(1-(\sin \alpha-\sin \beta)(\sin \beta-\sin \gamma)(\sin \gamma-\sin \alpha)\)
Matrix and Determinant

78452 If \(\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & x-2 & 1 \\ x & 1 & 1\end{array}\right]\) is singular, then the value of \(x\)

1 2
2 3
3 1
4 0
Matrix and Determinant

78449 If a matrix \(A\) is both symmetric and skew symmetric, then

1 A is diagonal matrix
2 A is a zero matrix
3 A is scalar matrix
4 A is square matrix
Matrix and Determinant

78450 If \(A\) and \(B\) are square matrices of order ' \(n\) ' such that \(A^{2}-B^{2}=(A-B)(A+B)\), then which of the following will be true?

1 Either of A or B is zero matrix.
2 \(\mathrm{A}=\mathrm{B}\)
3 \(\mathrm{AB}=\mathrm{BA}\)
4 Either of \(\mathrm{A}\) or \(\mathrm{B}\) is an identity matrix.
Matrix and Determinant

78451 \(\quad\left[\begin{array}{lll}\sin \alpha & \cos \alpha & \sin (\alpha+\delta) \\ \sin \beta & \cos \beta & \sin (\beta+\delta) \\ \sin \gamma & \cos \gamma & \sin (\gamma+\delta)\end{array}\right]=\) \(\sin \gamma \quad \cos \gamma \quad \sin (\gamma+\delta)]\)

1 0
2 1
3 \(1+\sin \alpha \sin \beta \sin \gamma\)
4 \(1-(\sin \alpha-\sin \beta)(\sin \beta-\sin \gamma)(\sin \gamma-\sin \alpha)\)
Matrix and Determinant

78452 If \(\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & x-2 & 1 \\ x & 1 & 1\end{array}\right]\) is singular, then the value of \(x\)

1 2
2 3
3 1
4 0
Matrix and Determinant

78449 If a matrix \(A\) is both symmetric and skew symmetric, then

1 A is diagonal matrix
2 A is a zero matrix
3 A is scalar matrix
4 A is square matrix
Matrix and Determinant

78450 If \(A\) and \(B\) are square matrices of order ' \(n\) ' such that \(A^{2}-B^{2}=(A-B)(A+B)\), then which of the following will be true?

1 Either of A or B is zero matrix.
2 \(\mathrm{A}=\mathrm{B}\)
3 \(\mathrm{AB}=\mathrm{BA}\)
4 Either of \(\mathrm{A}\) or \(\mathrm{B}\) is an identity matrix.
Matrix and Determinant

78451 \(\quad\left[\begin{array}{lll}\sin \alpha & \cos \alpha & \sin (\alpha+\delta) \\ \sin \beta & \cos \beta & \sin (\beta+\delta) \\ \sin \gamma & \cos \gamma & \sin (\gamma+\delta)\end{array}\right]=\) \(\sin \gamma \quad \cos \gamma \quad \sin (\gamma+\delta)]\)

1 0
2 1
3 \(1+\sin \alpha \sin \beta \sin \gamma\)
4 \(1-(\sin \alpha-\sin \beta)(\sin \beta-\sin \gamma)(\sin \gamma-\sin \alpha)\)
Matrix and Determinant

78452 If \(\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & x-2 & 1 \\ x & 1 & 1\end{array}\right]\) is singular, then the value of \(x\)

1 2
2 3
3 1
4 0
Matrix and Determinant

78449 If a matrix \(A\) is both symmetric and skew symmetric, then

1 A is diagonal matrix
2 A is a zero matrix
3 A is scalar matrix
4 A is square matrix
Matrix and Determinant

78450 If \(A\) and \(B\) are square matrices of order ' \(n\) ' such that \(A^{2}-B^{2}=(A-B)(A+B)\), then which of the following will be true?

1 Either of A or B is zero matrix.
2 \(\mathrm{A}=\mathrm{B}\)
3 \(\mathrm{AB}=\mathrm{BA}\)
4 Either of \(\mathrm{A}\) or \(\mathrm{B}\) is an identity matrix.
Matrix and Determinant

78451 \(\quad\left[\begin{array}{lll}\sin \alpha & \cos \alpha & \sin (\alpha+\delta) \\ \sin \beta & \cos \beta & \sin (\beta+\delta) \\ \sin \gamma & \cos \gamma & \sin (\gamma+\delta)\end{array}\right]=\) \(\sin \gamma \quad \cos \gamma \quad \sin (\gamma+\delta)]\)

1 0
2 1
3 \(1+\sin \alpha \sin \beta \sin \gamma\)
4 \(1-(\sin \alpha-\sin \beta)(\sin \beta-\sin \gamma)(\sin \gamma-\sin \alpha)\)
Matrix and Determinant

78452 If \(\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & x-2 & 1 \\ x & 1 & 1\end{array}\right]\) is singular, then the value of \(x\)

1 2
2 3
3 1
4 0