Matrices and Their Types
Matrix and Determinant

78441 For how many values of \(x\) in the closed interval
\([-4,-1]\) the matrix \(\left[\begin{array}{ccc}3 & x-1 & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is
singular :

1 zero
2 2
3 1
4 3
Matrix and Determinant

78443 Let \(M\) be \(2 \times 2\) symmetric matrix with integer entries, then \(M\) is invertible if

1 the first column of \(M\) is the transpose of second row of \(\mathrm{M}\)
2 the second row of \(\mathrm{M}\) is the transpose of first column of \(\mathrm{M}\)
3 \(\mathrm{M}\) is diagonal matrix with non-zero entries in the principal diagonal
4 the product of entries in the principal diagonal of \(M\) is the product of entries in the other diagonal
Matrix and Determinant

78444 If \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) \mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\), then the matrix \(A\) is

1 \(\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)
2 \(\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)\)
3 \(\left(\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right)\)
4 \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)\)
Matrix and Determinant

78446 If \(f(x)=\left[\begin{array}{ccc}x^{3}-x & a+x & b+x \\ x-a & x^{2}-x & c+x \\ x-b & x-c & 0\end{array}\right]\), then

1 \(\mathrm{f}(2)=0\)
2 \(\mathrm{f}(0)=0\)
3 \(\mathrm{f}(-1)=0\)
4 \(\mathrm{f}(1)=0\)
Matrix and Determinant

78448 If \(A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\), then \(A^{n}=2^{k} A\), where \(k=\)

1 \(2^{\mathrm{n}-1}\)
2 \(n+1\)
3 \(\mathrm{n}-1\)
4 \(2(n-1)\)
Matrix and Determinant

78441 For how many values of \(x\) in the closed interval
\([-4,-1]\) the matrix \(\left[\begin{array}{ccc}3 & x-1 & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is
singular :

1 zero
2 2
3 1
4 3
Matrix and Determinant

78443 Let \(M\) be \(2 \times 2\) symmetric matrix with integer entries, then \(M\) is invertible if

1 the first column of \(M\) is the transpose of second row of \(\mathrm{M}\)
2 the second row of \(\mathrm{M}\) is the transpose of first column of \(\mathrm{M}\)
3 \(\mathrm{M}\) is diagonal matrix with non-zero entries in the principal diagonal
4 the product of entries in the principal diagonal of \(M\) is the product of entries in the other diagonal
Matrix and Determinant

78444 If \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) \mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\), then the matrix \(A\) is

1 \(\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)
2 \(\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)\)
3 \(\left(\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right)\)
4 \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)\)
Matrix and Determinant

78446 If \(f(x)=\left[\begin{array}{ccc}x^{3}-x & a+x & b+x \\ x-a & x^{2}-x & c+x \\ x-b & x-c & 0\end{array}\right]\), then

1 \(\mathrm{f}(2)=0\)
2 \(\mathrm{f}(0)=0\)
3 \(\mathrm{f}(-1)=0\)
4 \(\mathrm{f}(1)=0\)
Matrix and Determinant

78448 If \(A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\), then \(A^{n}=2^{k} A\), where \(k=\)

1 \(2^{\mathrm{n}-1}\)
2 \(n+1\)
3 \(\mathrm{n}-1\)
4 \(2(n-1)\)
Matrix and Determinant

78441 For how many values of \(x\) in the closed interval
\([-4,-1]\) the matrix \(\left[\begin{array}{ccc}3 & x-1 & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is
singular :

1 zero
2 2
3 1
4 3
Matrix and Determinant

78443 Let \(M\) be \(2 \times 2\) symmetric matrix with integer entries, then \(M\) is invertible if

1 the first column of \(M\) is the transpose of second row of \(\mathrm{M}\)
2 the second row of \(\mathrm{M}\) is the transpose of first column of \(\mathrm{M}\)
3 \(\mathrm{M}\) is diagonal matrix with non-zero entries in the principal diagonal
4 the product of entries in the principal diagonal of \(M\) is the product of entries in the other diagonal
Matrix and Determinant

78444 If \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) \mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\), then the matrix \(A\) is

1 \(\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)
2 \(\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)\)
3 \(\left(\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right)\)
4 \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)\)
Matrix and Determinant

78446 If \(f(x)=\left[\begin{array}{ccc}x^{3}-x & a+x & b+x \\ x-a & x^{2}-x & c+x \\ x-b & x-c & 0\end{array}\right]\), then

1 \(\mathrm{f}(2)=0\)
2 \(\mathrm{f}(0)=0\)
3 \(\mathrm{f}(-1)=0\)
4 \(\mathrm{f}(1)=0\)
Matrix and Determinant

78448 If \(A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\), then \(A^{n}=2^{k} A\), where \(k=\)

1 \(2^{\mathrm{n}-1}\)
2 \(n+1\)
3 \(\mathrm{n}-1\)
4 \(2(n-1)\)
Matrix and Determinant

78441 For how many values of \(x\) in the closed interval
\([-4,-1]\) the matrix \(\left[\begin{array}{ccc}3 & x-1 & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is
singular :

1 zero
2 2
3 1
4 3
Matrix and Determinant

78443 Let \(M\) be \(2 \times 2\) symmetric matrix with integer entries, then \(M\) is invertible if

1 the first column of \(M\) is the transpose of second row of \(\mathrm{M}\)
2 the second row of \(\mathrm{M}\) is the transpose of first column of \(\mathrm{M}\)
3 \(\mathrm{M}\) is diagonal matrix with non-zero entries in the principal diagonal
4 the product of entries in the principal diagonal of \(M\) is the product of entries in the other diagonal
Matrix and Determinant

78444 If \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) \mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\), then the matrix \(A\) is

1 \(\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)
2 \(\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)\)
3 \(\left(\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right)\)
4 \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)\)
Matrix and Determinant

78446 If \(f(x)=\left[\begin{array}{ccc}x^{3}-x & a+x & b+x \\ x-a & x^{2}-x & c+x \\ x-b & x-c & 0\end{array}\right]\), then

1 \(\mathrm{f}(2)=0\)
2 \(\mathrm{f}(0)=0\)
3 \(\mathrm{f}(-1)=0\)
4 \(\mathrm{f}(1)=0\)
Matrix and Determinant

78448 If \(A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\), then \(A^{n}=2^{k} A\), where \(k=\)

1 \(2^{\mathrm{n}-1}\)
2 \(n+1\)
3 \(\mathrm{n}-1\)
4 \(2(n-1)\)
Matrix and Determinant

78441 For how many values of \(x\) in the closed interval
\([-4,-1]\) the matrix \(\left[\begin{array}{ccc}3 & x-1 & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is
singular :

1 zero
2 2
3 1
4 3
Matrix and Determinant

78443 Let \(M\) be \(2 \times 2\) symmetric matrix with integer entries, then \(M\) is invertible if

1 the first column of \(M\) is the transpose of second row of \(\mathrm{M}\)
2 the second row of \(\mathrm{M}\) is the transpose of first column of \(\mathrm{M}\)
3 \(\mathrm{M}\) is diagonal matrix with non-zero entries in the principal diagonal
4 the product of entries in the principal diagonal of \(M\) is the product of entries in the other diagonal
Matrix and Determinant

78444 If \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) \mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\), then the matrix \(A\) is

1 \(\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)\)
2 \(\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)\)
3 \(\left(\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right)\)
4 \(\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)\)
Matrix and Determinant

78446 If \(f(x)=\left[\begin{array}{ccc}x^{3}-x & a+x & b+x \\ x-a & x^{2}-x & c+x \\ x-b & x-c & 0\end{array}\right]\), then

1 \(\mathrm{f}(2)=0\)
2 \(\mathrm{f}(0)=0\)
3 \(\mathrm{f}(-1)=0\)
4 \(\mathrm{f}(1)=0\)
Matrix and Determinant

78448 If \(A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\), then \(A^{n}=2^{k} A\), where \(k=\)

1 \(2^{\mathrm{n}-1}\)
2 \(n+1\)
3 \(\mathrm{n}-1\)
4 \(2(n-1)\)