19974
A galvanic cell is set up from a zinc bar weighing \(50\,g\) and \(1.0\,litre,\) \(1.0\,M,\) \(CuS{O_4}\) solution. How long would the cell run, assuming it delivers a steady current of \(1.0 \) ampere ............... \(\mathrm{hrs}\)
1 \(48\)
2 \(41\)
3 \(21\)
4 \(1\)
Explanation:
\(Zn + CuSO _4 \rightarrow ZnSO _4+ Cu\) \(2 \,moles\) of electrons are exchanged. moles of \(Zn =\frac{100}{63.5}=1.57\) moles moles of \(CuSO _4=1 \,M \times 1\, L =1 \quad\) moles \(CuSO _4\) is in limiting fraction. So, moles of electrons exchanged are \(2\) moles charge \(=2 \times 96500 \,C\) If \(1\, A\) current is supplied time required \(=2 \times 96500 \,s =\frac{2 \times 96500}{3600}=\) \(53.6 \,hr\)
ELECTROCHEMISTRY
19975
On passing electric current through molten aluminium chloride, \( 11.2\) litre of \(C{l_2}\) is liberated at \(NTP\) at anode. The quantity of aluminium deposited at cathode is .............. \(\mathrm{g}\) (at. wt. of \(Al = 27\))
1 \(9\)
2 \(18\)
3 \(27\)
4 \(36\)
Explanation:
\(11.21\) of \(Cl _2\) at NTP \(\Rightarrow 0.5\) mole of \(Cl _2\) \(Cl _2\) gives \(2 \,moles\) of electer \(2 Cl ^{-}+2 e ^{-} \rightarrow Cl _2\) \(\therefore\) moles of \(e ^{-}=0.5 \times 2=1 Al ^{3+}+3 e ^{-} \rightarrow AC\) \(\therefore 1\, mole\) of \(Ac\) requires \(3\, moles\) of \(e\) \(\therefore 1\, mole\) \(e ^-\) reduces \(\frac{1}{3}\) moles of \(AC\) mole of \(AC =\frac{1}{3} \times 27=9\, g\)
ELECTROCHEMISTRY
19976
An electric current is passed through silver voltameter connected to a water voltameter. The cathode of the silver voltameter weighed \(0.108\,g\) more at the end of the electrolysis. The volume of oxygen evolved at \(STP\) is ............... \(\mathrm{cm}^{3}\)
1 \(56\)
2 \(550\)
3 \(5.6\)
4 \(11.2\)
Explanation:
\(A g^{+}+e^{-} \rightarrow A g\) \(2 O^{2-} \rightarrow O_{2}+4 e^{-}\) \(4 A g^{+}+2 O^{2-} \rightarrow O_{2}+4 A g \ldots( i )\) Amount of silver generated \(=0.108 g\) No. of mole of \(A g=\frac{0.108}{108}=0.001 mole\) No. of mole of \(O_{2}\) generated from equation (i) \(\frac{0.001}{4}\) \(\begin{aligned} \text { volume of } O_{2} &=\frac{0.001}{4} \times 22.4 \times 10^{3} cm ^{3} \\ &=5.6 cm ^{3} \end{aligned} \)
19974
A galvanic cell is set up from a zinc bar weighing \(50\,g\) and \(1.0\,litre,\) \(1.0\,M,\) \(CuS{O_4}\) solution. How long would the cell run, assuming it delivers a steady current of \(1.0 \) ampere ............... \(\mathrm{hrs}\)
1 \(48\)
2 \(41\)
3 \(21\)
4 \(1\)
Explanation:
\(Zn + CuSO _4 \rightarrow ZnSO _4+ Cu\) \(2 \,moles\) of electrons are exchanged. moles of \(Zn =\frac{100}{63.5}=1.57\) moles moles of \(CuSO _4=1 \,M \times 1\, L =1 \quad\) moles \(CuSO _4\) is in limiting fraction. So, moles of electrons exchanged are \(2\) moles charge \(=2 \times 96500 \,C\) If \(1\, A\) current is supplied time required \(=2 \times 96500 \,s =\frac{2 \times 96500}{3600}=\) \(53.6 \,hr\)
ELECTROCHEMISTRY
19975
On passing electric current through molten aluminium chloride, \( 11.2\) litre of \(C{l_2}\) is liberated at \(NTP\) at anode. The quantity of aluminium deposited at cathode is .............. \(\mathrm{g}\) (at. wt. of \(Al = 27\))
1 \(9\)
2 \(18\)
3 \(27\)
4 \(36\)
Explanation:
\(11.21\) of \(Cl _2\) at NTP \(\Rightarrow 0.5\) mole of \(Cl _2\) \(Cl _2\) gives \(2 \,moles\) of electer \(2 Cl ^{-}+2 e ^{-} \rightarrow Cl _2\) \(\therefore\) moles of \(e ^{-}=0.5 \times 2=1 Al ^{3+}+3 e ^{-} \rightarrow AC\) \(\therefore 1\, mole\) of \(Ac\) requires \(3\, moles\) of \(e\) \(\therefore 1\, mole\) \(e ^-\) reduces \(\frac{1}{3}\) moles of \(AC\) mole of \(AC =\frac{1}{3} \times 27=9\, g\)
ELECTROCHEMISTRY
19976
An electric current is passed through silver voltameter connected to a water voltameter. The cathode of the silver voltameter weighed \(0.108\,g\) more at the end of the electrolysis. The volume of oxygen evolved at \(STP\) is ............... \(\mathrm{cm}^{3}\)
1 \(56\)
2 \(550\)
3 \(5.6\)
4 \(11.2\)
Explanation:
\(A g^{+}+e^{-} \rightarrow A g\) \(2 O^{2-} \rightarrow O_{2}+4 e^{-}\) \(4 A g^{+}+2 O^{2-} \rightarrow O_{2}+4 A g \ldots( i )\) Amount of silver generated \(=0.108 g\) No. of mole of \(A g=\frac{0.108}{108}=0.001 mole\) No. of mole of \(O_{2}\) generated from equation (i) \(\frac{0.001}{4}\) \(\begin{aligned} \text { volume of } O_{2} &=\frac{0.001}{4} \times 22.4 \times 10^{3} cm ^{3} \\ &=5.6 cm ^{3} \end{aligned} \)
19974
A galvanic cell is set up from a zinc bar weighing \(50\,g\) and \(1.0\,litre,\) \(1.0\,M,\) \(CuS{O_4}\) solution. How long would the cell run, assuming it delivers a steady current of \(1.0 \) ampere ............... \(\mathrm{hrs}\)
1 \(48\)
2 \(41\)
3 \(21\)
4 \(1\)
Explanation:
\(Zn + CuSO _4 \rightarrow ZnSO _4+ Cu\) \(2 \,moles\) of electrons are exchanged. moles of \(Zn =\frac{100}{63.5}=1.57\) moles moles of \(CuSO _4=1 \,M \times 1\, L =1 \quad\) moles \(CuSO _4\) is in limiting fraction. So, moles of electrons exchanged are \(2\) moles charge \(=2 \times 96500 \,C\) If \(1\, A\) current is supplied time required \(=2 \times 96500 \,s =\frac{2 \times 96500}{3600}=\) \(53.6 \,hr\)
ELECTROCHEMISTRY
19975
On passing electric current through molten aluminium chloride, \( 11.2\) litre of \(C{l_2}\) is liberated at \(NTP\) at anode. The quantity of aluminium deposited at cathode is .............. \(\mathrm{g}\) (at. wt. of \(Al = 27\))
1 \(9\)
2 \(18\)
3 \(27\)
4 \(36\)
Explanation:
\(11.21\) of \(Cl _2\) at NTP \(\Rightarrow 0.5\) mole of \(Cl _2\) \(Cl _2\) gives \(2 \,moles\) of electer \(2 Cl ^{-}+2 e ^{-} \rightarrow Cl _2\) \(\therefore\) moles of \(e ^{-}=0.5 \times 2=1 Al ^{3+}+3 e ^{-} \rightarrow AC\) \(\therefore 1\, mole\) of \(Ac\) requires \(3\, moles\) of \(e\) \(\therefore 1\, mole\) \(e ^-\) reduces \(\frac{1}{3}\) moles of \(AC\) mole of \(AC =\frac{1}{3} \times 27=9\, g\)
ELECTROCHEMISTRY
19976
An electric current is passed through silver voltameter connected to a water voltameter. The cathode of the silver voltameter weighed \(0.108\,g\) more at the end of the electrolysis. The volume of oxygen evolved at \(STP\) is ............... \(\mathrm{cm}^{3}\)
1 \(56\)
2 \(550\)
3 \(5.6\)
4 \(11.2\)
Explanation:
\(A g^{+}+e^{-} \rightarrow A g\) \(2 O^{2-} \rightarrow O_{2}+4 e^{-}\) \(4 A g^{+}+2 O^{2-} \rightarrow O_{2}+4 A g \ldots( i )\) Amount of silver generated \(=0.108 g\) No. of mole of \(A g=\frac{0.108}{108}=0.001 mole\) No. of mole of \(O_{2}\) generated from equation (i) \(\frac{0.001}{4}\) \(\begin{aligned} \text { volume of } O_{2} &=\frac{0.001}{4} \times 22.4 \times 10^{3} cm ^{3} \\ &=5.6 cm ^{3} \end{aligned} \)
19974
A galvanic cell is set up from a zinc bar weighing \(50\,g\) and \(1.0\,litre,\) \(1.0\,M,\) \(CuS{O_4}\) solution. How long would the cell run, assuming it delivers a steady current of \(1.0 \) ampere ............... \(\mathrm{hrs}\)
1 \(48\)
2 \(41\)
3 \(21\)
4 \(1\)
Explanation:
\(Zn + CuSO _4 \rightarrow ZnSO _4+ Cu\) \(2 \,moles\) of electrons are exchanged. moles of \(Zn =\frac{100}{63.5}=1.57\) moles moles of \(CuSO _4=1 \,M \times 1\, L =1 \quad\) moles \(CuSO _4\) is in limiting fraction. So, moles of electrons exchanged are \(2\) moles charge \(=2 \times 96500 \,C\) If \(1\, A\) current is supplied time required \(=2 \times 96500 \,s =\frac{2 \times 96500}{3600}=\) \(53.6 \,hr\)
ELECTROCHEMISTRY
19975
On passing electric current through molten aluminium chloride, \( 11.2\) litre of \(C{l_2}\) is liberated at \(NTP\) at anode. The quantity of aluminium deposited at cathode is .............. \(\mathrm{g}\) (at. wt. of \(Al = 27\))
1 \(9\)
2 \(18\)
3 \(27\)
4 \(36\)
Explanation:
\(11.21\) of \(Cl _2\) at NTP \(\Rightarrow 0.5\) mole of \(Cl _2\) \(Cl _2\) gives \(2 \,moles\) of electer \(2 Cl ^{-}+2 e ^{-} \rightarrow Cl _2\) \(\therefore\) moles of \(e ^{-}=0.5 \times 2=1 Al ^{3+}+3 e ^{-} \rightarrow AC\) \(\therefore 1\, mole\) of \(Ac\) requires \(3\, moles\) of \(e\) \(\therefore 1\, mole\) \(e ^-\) reduces \(\frac{1}{3}\) moles of \(AC\) mole of \(AC =\frac{1}{3} \times 27=9\, g\)
ELECTROCHEMISTRY
19976
An electric current is passed through silver voltameter connected to a water voltameter. The cathode of the silver voltameter weighed \(0.108\,g\) more at the end of the electrolysis. The volume of oxygen evolved at \(STP\) is ............... \(\mathrm{cm}^{3}\)
1 \(56\)
2 \(550\)
3 \(5.6\)
4 \(11.2\)
Explanation:
\(A g^{+}+e^{-} \rightarrow A g\) \(2 O^{2-} \rightarrow O_{2}+4 e^{-}\) \(4 A g^{+}+2 O^{2-} \rightarrow O_{2}+4 A g \ldots( i )\) Amount of silver generated \(=0.108 g\) No. of mole of \(A g=\frac{0.108}{108}=0.001 mole\) No. of mole of \(O_{2}\) generated from equation (i) \(\frac{0.001}{4}\) \(\begin{aligned} \text { volume of } O_{2} &=\frac{0.001}{4} \times 22.4 \times 10^{3} cm ^{3} \\ &=5.6 cm ^{3} \end{aligned} \)
19974
A galvanic cell is set up from a zinc bar weighing \(50\,g\) and \(1.0\,litre,\) \(1.0\,M,\) \(CuS{O_4}\) solution. How long would the cell run, assuming it delivers a steady current of \(1.0 \) ampere ............... \(\mathrm{hrs}\)
1 \(48\)
2 \(41\)
3 \(21\)
4 \(1\)
Explanation:
\(Zn + CuSO _4 \rightarrow ZnSO _4+ Cu\) \(2 \,moles\) of electrons are exchanged. moles of \(Zn =\frac{100}{63.5}=1.57\) moles moles of \(CuSO _4=1 \,M \times 1\, L =1 \quad\) moles \(CuSO _4\) is in limiting fraction. So, moles of electrons exchanged are \(2\) moles charge \(=2 \times 96500 \,C\) If \(1\, A\) current is supplied time required \(=2 \times 96500 \,s =\frac{2 \times 96500}{3600}=\) \(53.6 \,hr\)
ELECTROCHEMISTRY
19975
On passing electric current through molten aluminium chloride, \( 11.2\) litre of \(C{l_2}\) is liberated at \(NTP\) at anode. The quantity of aluminium deposited at cathode is .............. \(\mathrm{g}\) (at. wt. of \(Al = 27\))
1 \(9\)
2 \(18\)
3 \(27\)
4 \(36\)
Explanation:
\(11.21\) of \(Cl _2\) at NTP \(\Rightarrow 0.5\) mole of \(Cl _2\) \(Cl _2\) gives \(2 \,moles\) of electer \(2 Cl ^{-}+2 e ^{-} \rightarrow Cl _2\) \(\therefore\) moles of \(e ^{-}=0.5 \times 2=1 Al ^{3+}+3 e ^{-} \rightarrow AC\) \(\therefore 1\, mole\) of \(Ac\) requires \(3\, moles\) of \(e\) \(\therefore 1\, mole\) \(e ^-\) reduces \(\frac{1}{3}\) moles of \(AC\) mole of \(AC =\frac{1}{3} \times 27=9\, g\)
ELECTROCHEMISTRY
19976
An electric current is passed through silver voltameter connected to a water voltameter. The cathode of the silver voltameter weighed \(0.108\,g\) more at the end of the electrolysis. The volume of oxygen evolved at \(STP\) is ............... \(\mathrm{cm}^{3}\)
1 \(56\)
2 \(550\)
3 \(5.6\)
4 \(11.2\)
Explanation:
\(A g^{+}+e^{-} \rightarrow A g\) \(2 O^{2-} \rightarrow O_{2}+4 e^{-}\) \(4 A g^{+}+2 O^{2-} \rightarrow O_{2}+4 A g \ldots( i )\) Amount of silver generated \(=0.108 g\) No. of mole of \(A g=\frac{0.108}{108}=0.001 mole\) No. of mole of \(O_{2}\) generated from equation (i) \(\frac{0.001}{4}\) \(\begin{aligned} \text { volume of } O_{2} &=\frac{0.001}{4} \times 22.4 \times 10^{3} cm ^{3} \\ &=5.6 cm ^{3} \end{aligned} \)