05. Dynamo, Transformer Inductance
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155394 A $220 \mathrm{~V}$ input is supplied to a transformer. The output circuit draws a current of $2.0 \mathrm{~A}$ at 440 $V$. If the efficiency of the transformer is $80 \%$, the current drawn by the primary windings of the transformer is

1 $3.6 \mathrm{~A}$
2 $2.8 \mathrm{~A}$
3 $2.5 \mathrm{~A}$
4 $5.0 \mathrm{~A}$
Alternating Current

155395 A step-up transformer operates on a $230 \mathrm{~V}$ line and a load current of $2 \mathrm{~A}$. The ratio of primary and secondary windings is $1: 25$. Then, the current in the primary is :

1 $25 \mathrm{~A}$
2 $50 \mathrm{~A}$
3 $15 \mathrm{~A}$
4 $12.5 \mathrm{~A}$
Alternating Current

155396 An ideal transformer converts $220 \mathrm{~V}$ a.c. to 3.3 $\mathrm{kV}$ a.c. to transmit a power of $4.4 \mathrm{~kW}$. If primary coil has 600 turns, then alternating current in secondary coil is

1 $\frac{1}{3} \mathrm{~A}$
2 $\frac{4}{3} \mathrm{~A}$
3 $\frac{5}{3} \mathrm{~A}$
4 $\frac{7}{3} \mathrm{~A}$
Alternating Current

155397 A current of $5 \mathrm{~A}$ is flowing at $220 \mathrm{~V}$ in the primary coil of a transformer. If the voltage produced in secondary coil is $2200 \mathrm{~V}$ and $50 \%$ of power is lost, then the current in the secondary coil is-

1 $0.25 \mathrm{~A}$
2 $2.5 \mathrm{~A}$
3 $0.5 \mathrm{~A}$
4 $5 \mathrm{~A}$
Alternating Current

155394 A $220 \mathrm{~V}$ input is supplied to a transformer. The output circuit draws a current of $2.0 \mathrm{~A}$ at 440 $V$. If the efficiency of the transformer is $80 \%$, the current drawn by the primary windings of the transformer is

1 $3.6 \mathrm{~A}$
2 $2.8 \mathrm{~A}$
3 $2.5 \mathrm{~A}$
4 $5.0 \mathrm{~A}$
Alternating Current

155395 A step-up transformer operates on a $230 \mathrm{~V}$ line and a load current of $2 \mathrm{~A}$. The ratio of primary and secondary windings is $1: 25$. Then, the current in the primary is :

1 $25 \mathrm{~A}$
2 $50 \mathrm{~A}$
3 $15 \mathrm{~A}$
4 $12.5 \mathrm{~A}$
Alternating Current

155396 An ideal transformer converts $220 \mathrm{~V}$ a.c. to 3.3 $\mathrm{kV}$ a.c. to transmit a power of $4.4 \mathrm{~kW}$. If primary coil has 600 turns, then alternating current in secondary coil is

1 $\frac{1}{3} \mathrm{~A}$
2 $\frac{4}{3} \mathrm{~A}$
3 $\frac{5}{3} \mathrm{~A}$
4 $\frac{7}{3} \mathrm{~A}$
Alternating Current

155397 A current of $5 \mathrm{~A}$ is flowing at $220 \mathrm{~V}$ in the primary coil of a transformer. If the voltage produced in secondary coil is $2200 \mathrm{~V}$ and $50 \%$ of power is lost, then the current in the secondary coil is-

1 $0.25 \mathrm{~A}$
2 $2.5 \mathrm{~A}$
3 $0.5 \mathrm{~A}$
4 $5 \mathrm{~A}$
Alternating Current

155394 A $220 \mathrm{~V}$ input is supplied to a transformer. The output circuit draws a current of $2.0 \mathrm{~A}$ at 440 $V$. If the efficiency of the transformer is $80 \%$, the current drawn by the primary windings of the transformer is

1 $3.6 \mathrm{~A}$
2 $2.8 \mathrm{~A}$
3 $2.5 \mathrm{~A}$
4 $5.0 \mathrm{~A}$
Alternating Current

155395 A step-up transformer operates on a $230 \mathrm{~V}$ line and a load current of $2 \mathrm{~A}$. The ratio of primary and secondary windings is $1: 25$. Then, the current in the primary is :

1 $25 \mathrm{~A}$
2 $50 \mathrm{~A}$
3 $15 \mathrm{~A}$
4 $12.5 \mathrm{~A}$
Alternating Current

155396 An ideal transformer converts $220 \mathrm{~V}$ a.c. to 3.3 $\mathrm{kV}$ a.c. to transmit a power of $4.4 \mathrm{~kW}$. If primary coil has 600 turns, then alternating current in secondary coil is

1 $\frac{1}{3} \mathrm{~A}$
2 $\frac{4}{3} \mathrm{~A}$
3 $\frac{5}{3} \mathrm{~A}$
4 $\frac{7}{3} \mathrm{~A}$
Alternating Current

155397 A current of $5 \mathrm{~A}$ is flowing at $220 \mathrm{~V}$ in the primary coil of a transformer. If the voltage produced in secondary coil is $2200 \mathrm{~V}$ and $50 \%$ of power is lost, then the current in the secondary coil is-

1 $0.25 \mathrm{~A}$
2 $2.5 \mathrm{~A}$
3 $0.5 \mathrm{~A}$
4 $5 \mathrm{~A}$
Alternating Current

155394 A $220 \mathrm{~V}$ input is supplied to a transformer. The output circuit draws a current of $2.0 \mathrm{~A}$ at 440 $V$. If the efficiency of the transformer is $80 \%$, the current drawn by the primary windings of the transformer is

1 $3.6 \mathrm{~A}$
2 $2.8 \mathrm{~A}$
3 $2.5 \mathrm{~A}$
4 $5.0 \mathrm{~A}$
Alternating Current

155395 A step-up transformer operates on a $230 \mathrm{~V}$ line and a load current of $2 \mathrm{~A}$. The ratio of primary and secondary windings is $1: 25$. Then, the current in the primary is :

1 $25 \mathrm{~A}$
2 $50 \mathrm{~A}$
3 $15 \mathrm{~A}$
4 $12.5 \mathrm{~A}$
Alternating Current

155396 An ideal transformer converts $220 \mathrm{~V}$ a.c. to 3.3 $\mathrm{kV}$ a.c. to transmit a power of $4.4 \mathrm{~kW}$. If primary coil has 600 turns, then alternating current in secondary coil is

1 $\frac{1}{3} \mathrm{~A}$
2 $\frac{4}{3} \mathrm{~A}$
3 $\frac{5}{3} \mathrm{~A}$
4 $\frac{7}{3} \mathrm{~A}$
Alternating Current

155397 A current of $5 \mathrm{~A}$ is flowing at $220 \mathrm{~V}$ in the primary coil of a transformer. If the voltage produced in secondary coil is $2200 \mathrm{~V}$ and $50 \%$ of power is lost, then the current in the secondary coil is-

1 $0.25 \mathrm{~A}$
2 $2.5 \mathrm{~A}$
3 $0.5 \mathrm{~A}$
4 $5 \mathrm{~A}$