04. Power in A.C. Circuit, Wattless Current or Idle Current
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155321 A current $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$ flow in an $A C$ circuit, if potential $E=E_{0} \sin \omega t$ has been applied. The power consumption in the circuit will be

1 $\frac{\mathrm{E}_{0} \mathrm{I}_{0}}{\sqrt{2}}$
2 $\frac{\text { EI }}{\sqrt{2}}$
3 $\frac{\mathrm{E}_{0} \mathrm{I}_{0}}{2}$
4 Zero
Alternating Current

155322 A resistor and an inductor are connected in series to an $A C$ source of voltage $150 \sin (100 \pi t+\pi)$ volt. If the current in the circuit is $5 \sin \left(100 \pi t+\frac{2 \pi}{3}\right)$ ampere, then the average power dissipated and the resistance of the resistor are respectively

1 $187.5 \mathrm{~W}, 30 \Omega$
2 $187.5 \mathrm{~W}, 15 \Omega$
3 $375 \mathrm{~W}, 30 \Omega$
4 $375 \mathrm{~W}, 15 \Omega$
Alternating Current

155323 A small town is located $10 \mathrm{~km}$ away from a power plant. An average of $120 \mathrm{~kW}$ of electric power is sent to this town. The transmission lines have a total resistance of $0.40 \Omega$. Calculate the power loss, if the power is transmitted at $240 \mathrm{~V}$.

1 $100 \mathrm{~W}$
2 $10 \mathrm{~W}$
3 $100 \mathrm{~kW}$
4 $10 \mathrm{~kW}$
Alternating Current

155325 In a LCR series resonating circuit, the value of average power loss is :

1 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$
2 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\text {rms }}}{\mathrm{R} \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$
3 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}}{\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}}$
4 $\frac{V_{\text {rms }} I_{\text {rms }}}{\sqrt{R^{2}+\left(X_{L}+X_{C}\right)^{2}}}$
Alternating Current

155321 A current $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$ flow in an $A C$ circuit, if potential $E=E_{0} \sin \omega t$ has been applied. The power consumption in the circuit will be

1 $\frac{\mathrm{E}_{0} \mathrm{I}_{0}}{\sqrt{2}}$
2 $\frac{\text { EI }}{\sqrt{2}}$
3 $\frac{\mathrm{E}_{0} \mathrm{I}_{0}}{2}$
4 Zero
Alternating Current

155322 A resistor and an inductor are connected in series to an $A C$ source of voltage $150 \sin (100 \pi t+\pi)$ volt. If the current in the circuit is $5 \sin \left(100 \pi t+\frac{2 \pi}{3}\right)$ ampere, then the average power dissipated and the resistance of the resistor are respectively

1 $187.5 \mathrm{~W}, 30 \Omega$
2 $187.5 \mathrm{~W}, 15 \Omega$
3 $375 \mathrm{~W}, 30 \Omega$
4 $375 \mathrm{~W}, 15 \Omega$
Alternating Current

155323 A small town is located $10 \mathrm{~km}$ away from a power plant. An average of $120 \mathrm{~kW}$ of electric power is sent to this town. The transmission lines have a total resistance of $0.40 \Omega$. Calculate the power loss, if the power is transmitted at $240 \mathrm{~V}$.

1 $100 \mathrm{~W}$
2 $10 \mathrm{~W}$
3 $100 \mathrm{~kW}$
4 $10 \mathrm{~kW}$
Alternating Current

155325 In a LCR series resonating circuit, the value of average power loss is :

1 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$
2 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\text {rms }}}{\mathrm{R} \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$
3 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}}{\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}}$
4 $\frac{V_{\text {rms }} I_{\text {rms }}}{\sqrt{R^{2}+\left(X_{L}+X_{C}\right)^{2}}}$
Alternating Current

155321 A current $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$ flow in an $A C$ circuit, if potential $E=E_{0} \sin \omega t$ has been applied. The power consumption in the circuit will be

1 $\frac{\mathrm{E}_{0} \mathrm{I}_{0}}{\sqrt{2}}$
2 $\frac{\text { EI }}{\sqrt{2}}$
3 $\frac{\mathrm{E}_{0} \mathrm{I}_{0}}{2}$
4 Zero
Alternating Current

155322 A resistor and an inductor are connected in series to an $A C$ source of voltage $150 \sin (100 \pi t+\pi)$ volt. If the current in the circuit is $5 \sin \left(100 \pi t+\frac{2 \pi}{3}\right)$ ampere, then the average power dissipated and the resistance of the resistor are respectively

1 $187.5 \mathrm{~W}, 30 \Omega$
2 $187.5 \mathrm{~W}, 15 \Omega$
3 $375 \mathrm{~W}, 30 \Omega$
4 $375 \mathrm{~W}, 15 \Omega$
Alternating Current

155323 A small town is located $10 \mathrm{~km}$ away from a power plant. An average of $120 \mathrm{~kW}$ of electric power is sent to this town. The transmission lines have a total resistance of $0.40 \Omega$. Calculate the power loss, if the power is transmitted at $240 \mathrm{~V}$.

1 $100 \mathrm{~W}$
2 $10 \mathrm{~W}$
3 $100 \mathrm{~kW}$
4 $10 \mathrm{~kW}$
Alternating Current

155325 In a LCR series resonating circuit, the value of average power loss is :

1 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$
2 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\text {rms }}}{\mathrm{R} \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$
3 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}}{\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}}$
4 $\frac{V_{\text {rms }} I_{\text {rms }}}{\sqrt{R^{2}+\left(X_{L}+X_{C}\right)^{2}}}$
Alternating Current

155321 A current $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$ flow in an $A C$ circuit, if potential $E=E_{0} \sin \omega t$ has been applied. The power consumption in the circuit will be

1 $\frac{\mathrm{E}_{0} \mathrm{I}_{0}}{\sqrt{2}}$
2 $\frac{\text { EI }}{\sqrt{2}}$
3 $\frac{\mathrm{E}_{0} \mathrm{I}_{0}}{2}$
4 Zero
Alternating Current

155322 A resistor and an inductor are connected in series to an $A C$ source of voltage $150 \sin (100 \pi t+\pi)$ volt. If the current in the circuit is $5 \sin \left(100 \pi t+\frac{2 \pi}{3}\right)$ ampere, then the average power dissipated and the resistance of the resistor are respectively

1 $187.5 \mathrm{~W}, 30 \Omega$
2 $187.5 \mathrm{~W}, 15 \Omega$
3 $375 \mathrm{~W}, 30 \Omega$
4 $375 \mathrm{~W}, 15 \Omega$
Alternating Current

155323 A small town is located $10 \mathrm{~km}$ away from a power plant. An average of $120 \mathrm{~kW}$ of electric power is sent to this town. The transmission lines have a total resistance of $0.40 \Omega$. Calculate the power loss, if the power is transmitted at $240 \mathrm{~V}$.

1 $100 \mathrm{~W}$
2 $10 \mathrm{~W}$
3 $100 \mathrm{~kW}$
4 $10 \mathrm{~kW}$
Alternating Current

155325 In a LCR series resonating circuit, the value of average power loss is :

1 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$
2 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\text {rms }}}{\mathrm{R} \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}$
3 $\frac{\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}}{\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}}$
4 $\frac{V_{\text {rms }} I_{\text {rms }}}{\sqrt{R^{2}+\left(X_{L}+X_{C}\right)^{2}}}$