NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Alternating Current
155309
An $\mathrm{L}-\mathrm{C}$ circuit is in the state of resonance. If $C=0.1 \mu \mathrm{F}$ and $L=0.25$ Henry, neglecting ohmic resistance of circuit, what is the frequency of oscillations?
1 $1007 \mathrm{~Hz}$
2 $100 \mathrm{~Hz}$
3 $109 \mathrm{~Hz}$
4 $500 \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=0.25 \mathrm{H}$ We know that, $\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{0.1 \times 10^{-6} \times 0.25}}$ $\mathrm{f} = 1007 \mathrm{~Hz}$
JIPMER-2005
Alternating Current
155299
An inductance $L$ having a resistance $R$ is connected to an alternating source of angular frequency $\omega$. The quality factor $Q$ of inductance is
1 $\mathrm{R} / \omega \mathrm{L}$
2 $(\omega \mathrm{L} / \mathrm{R})^{2}$
3 $(\mathrm{R} / \omega \mathrm{L})^{1 / 2}$
4 $\omega \mathrm{L} / \mathrm{R}$
Explanation:
D We know that, $\mathrm{Q}=\frac{\text { Potential drop across capacitor or inductor }}{\text { Potential drop across } \mathrm{R}}$ $\mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}$
AIIMS-2014
Alternating Current
155303
Q- factor can be increased by having a coil of
1 large inductance, small ohmic resistance
2 large inductance, large ohmic resistance
3 small inductance, large ohmic resistance
4 small inductance, small ohmic resistance
Explanation:
A We know that, Quality factor $(\mathrm{Q})=\frac{\omega \mathrm{L}}{\mathrm{R}}$ So, $\quad \mathrm{Q} \propto \mathrm{L}$ Or $\quad \mathrm{Q} \propto \frac{1}{\mathrm{R}}$ So, Q-factor can be increased by having a coil of large inductance, small ohmic resistance.
VITEEE-2006
Alternating Current
155304
In an LCR series resonant circuit which one of the following cannot be the expression for the Q-factor
C We know that, Quality factor $(\mathrm{Q})=\frac{\omega \mathrm{L}}{\mathrm{R}}$ At resonant, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}$ So, $\quad \mathrm{Q}=\frac{\mathrm{L}}{\sqrt{\mathrm{LC}} \times \mathrm{R}}$ $\mathrm{Q}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$
155309
An $\mathrm{L}-\mathrm{C}$ circuit is in the state of resonance. If $C=0.1 \mu \mathrm{F}$ and $L=0.25$ Henry, neglecting ohmic resistance of circuit, what is the frequency of oscillations?
1 $1007 \mathrm{~Hz}$
2 $100 \mathrm{~Hz}$
3 $109 \mathrm{~Hz}$
4 $500 \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=0.25 \mathrm{H}$ We know that, $\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{0.1 \times 10^{-6} \times 0.25}}$ $\mathrm{f} = 1007 \mathrm{~Hz}$
JIPMER-2005
Alternating Current
155299
An inductance $L$ having a resistance $R$ is connected to an alternating source of angular frequency $\omega$. The quality factor $Q$ of inductance is
1 $\mathrm{R} / \omega \mathrm{L}$
2 $(\omega \mathrm{L} / \mathrm{R})^{2}$
3 $(\mathrm{R} / \omega \mathrm{L})^{1 / 2}$
4 $\omega \mathrm{L} / \mathrm{R}$
Explanation:
D We know that, $\mathrm{Q}=\frac{\text { Potential drop across capacitor or inductor }}{\text { Potential drop across } \mathrm{R}}$ $\mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}$
AIIMS-2014
Alternating Current
155303
Q- factor can be increased by having a coil of
1 large inductance, small ohmic resistance
2 large inductance, large ohmic resistance
3 small inductance, large ohmic resistance
4 small inductance, small ohmic resistance
Explanation:
A We know that, Quality factor $(\mathrm{Q})=\frac{\omega \mathrm{L}}{\mathrm{R}}$ So, $\quad \mathrm{Q} \propto \mathrm{L}$ Or $\quad \mathrm{Q} \propto \frac{1}{\mathrm{R}}$ So, Q-factor can be increased by having a coil of large inductance, small ohmic resistance.
VITEEE-2006
Alternating Current
155304
In an LCR series resonant circuit which one of the following cannot be the expression for the Q-factor
C We know that, Quality factor $(\mathrm{Q})=\frac{\omega \mathrm{L}}{\mathrm{R}}$ At resonant, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}$ So, $\quad \mathrm{Q}=\frac{\mathrm{L}}{\sqrt{\mathrm{LC}} \times \mathrm{R}}$ $\mathrm{Q}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$
155309
An $\mathrm{L}-\mathrm{C}$ circuit is in the state of resonance. If $C=0.1 \mu \mathrm{F}$ and $L=0.25$ Henry, neglecting ohmic resistance of circuit, what is the frequency of oscillations?
1 $1007 \mathrm{~Hz}$
2 $100 \mathrm{~Hz}$
3 $109 \mathrm{~Hz}$
4 $500 \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=0.25 \mathrm{H}$ We know that, $\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{0.1 \times 10^{-6} \times 0.25}}$ $\mathrm{f} = 1007 \mathrm{~Hz}$
JIPMER-2005
Alternating Current
155299
An inductance $L$ having a resistance $R$ is connected to an alternating source of angular frequency $\omega$. The quality factor $Q$ of inductance is
1 $\mathrm{R} / \omega \mathrm{L}$
2 $(\omega \mathrm{L} / \mathrm{R})^{2}$
3 $(\mathrm{R} / \omega \mathrm{L})^{1 / 2}$
4 $\omega \mathrm{L} / \mathrm{R}$
Explanation:
D We know that, $\mathrm{Q}=\frac{\text { Potential drop across capacitor or inductor }}{\text { Potential drop across } \mathrm{R}}$ $\mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}$
AIIMS-2014
Alternating Current
155303
Q- factor can be increased by having a coil of
1 large inductance, small ohmic resistance
2 large inductance, large ohmic resistance
3 small inductance, large ohmic resistance
4 small inductance, small ohmic resistance
Explanation:
A We know that, Quality factor $(\mathrm{Q})=\frac{\omega \mathrm{L}}{\mathrm{R}}$ So, $\quad \mathrm{Q} \propto \mathrm{L}$ Or $\quad \mathrm{Q} \propto \frac{1}{\mathrm{R}}$ So, Q-factor can be increased by having a coil of large inductance, small ohmic resistance.
VITEEE-2006
Alternating Current
155304
In an LCR series resonant circuit which one of the following cannot be the expression for the Q-factor
C We know that, Quality factor $(\mathrm{Q})=\frac{\omega \mathrm{L}}{\mathrm{R}}$ At resonant, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}$ So, $\quad \mathrm{Q}=\frac{\mathrm{L}}{\sqrt{\mathrm{LC}} \times \mathrm{R}}$ $\mathrm{Q}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Alternating Current
155309
An $\mathrm{L}-\mathrm{C}$ circuit is in the state of resonance. If $C=0.1 \mu \mathrm{F}$ and $L=0.25$ Henry, neglecting ohmic resistance of circuit, what is the frequency of oscillations?
1 $1007 \mathrm{~Hz}$
2 $100 \mathrm{~Hz}$
3 $109 \mathrm{~Hz}$
4 $500 \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=0.25 \mathrm{H}$ We know that, $\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{0.1 \times 10^{-6} \times 0.25}}$ $\mathrm{f} = 1007 \mathrm{~Hz}$
JIPMER-2005
Alternating Current
155299
An inductance $L$ having a resistance $R$ is connected to an alternating source of angular frequency $\omega$. The quality factor $Q$ of inductance is
1 $\mathrm{R} / \omega \mathrm{L}$
2 $(\omega \mathrm{L} / \mathrm{R})^{2}$
3 $(\mathrm{R} / \omega \mathrm{L})^{1 / 2}$
4 $\omega \mathrm{L} / \mathrm{R}$
Explanation:
D We know that, $\mathrm{Q}=\frac{\text { Potential drop across capacitor or inductor }}{\text { Potential drop across } \mathrm{R}}$ $\mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}$
AIIMS-2014
Alternating Current
155303
Q- factor can be increased by having a coil of
1 large inductance, small ohmic resistance
2 large inductance, large ohmic resistance
3 small inductance, large ohmic resistance
4 small inductance, small ohmic resistance
Explanation:
A We know that, Quality factor $(\mathrm{Q})=\frac{\omega \mathrm{L}}{\mathrm{R}}$ So, $\quad \mathrm{Q} \propto \mathrm{L}$ Or $\quad \mathrm{Q} \propto \frac{1}{\mathrm{R}}$ So, Q-factor can be increased by having a coil of large inductance, small ohmic resistance.
VITEEE-2006
Alternating Current
155304
In an LCR series resonant circuit which one of the following cannot be the expression for the Q-factor
C We know that, Quality factor $(\mathrm{Q})=\frac{\omega \mathrm{L}}{\mathrm{R}}$ At resonant, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}$ So, $\quad \mathrm{Q}=\frac{\mathrm{L}}{\sqrt{\mathrm{LC}} \times \mathrm{R}}$ $\mathrm{Q}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$