02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155126 In LCR circuit the inductance is changed from $L$ to $9 \mathrm{~L}$. For same resonant frequency the capacitance should be changed from $\mathrm{C}$ to

1 $9 \mathrm{C}$
2 $\frac{\mathrm{C}}{9}$
3 $\frac{\mathrm{C}}{3}$
4 $3 \mathrm{C}$
Alternating Current

155127 In an LCR circuit, inductive reactance is $30 \Omega$ and capacitive reactance $30 \Omega$. The resistance was found to be $40 \Omega$. The probable impedance of the combination is

1 $40 \Omega$
2 $60 \Omega$
3 $100 \Omega$
4 $20 \Omega$
Alternating Current

155130 The resonant frequency of a series LCR circuit is ' $f$ '. The circuit is now connected to the sinusoidally alternating e.m.f. of frequency ' $2 f$ '. The new reactance $X_{L}^{\prime}$ and $X_{C}^{\prime}$ are related as

1 $\mathrm{X}_{\mathrm{C}}^{\prime}=\frac{1}{4} \mathrm{X}_{\mathrm{L}}^{\prime}$
2 $X_{C}^{\prime}=2 X_{L}^{\prime}$
3 $\mathrm{X}_{\mathrm{C}}^{\prime}=\frac{1}{2} \mathrm{X}_{\mathrm{L}}^{\prime}$
4 $X_{C}^{\prime}=X_{L}^{\prime}$
Alternating Current

155133 An alternating e.m.f. of $0.2 \mathrm{~V}$ is applied across an LCR series circuit having $R=4 \Omega, C=80 \mu \mathrm{F}$ and $L=200 \mathrm{mH}$. At resonance the voltage drop across the inductor is

1 $2.5 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $1 \mathrm{~V}$
4 $10 \mathrm{~V}$
Alternating Current

155126 In LCR circuit the inductance is changed from $L$ to $9 \mathrm{~L}$. For same resonant frequency the capacitance should be changed from $\mathrm{C}$ to

1 $9 \mathrm{C}$
2 $\frac{\mathrm{C}}{9}$
3 $\frac{\mathrm{C}}{3}$
4 $3 \mathrm{C}$
Alternating Current

155127 In an LCR circuit, inductive reactance is $30 \Omega$ and capacitive reactance $30 \Omega$. The resistance was found to be $40 \Omega$. The probable impedance of the combination is

1 $40 \Omega$
2 $60 \Omega$
3 $100 \Omega$
4 $20 \Omega$
Alternating Current

155130 The resonant frequency of a series LCR circuit is ' $f$ '. The circuit is now connected to the sinusoidally alternating e.m.f. of frequency ' $2 f$ '. The new reactance $X_{L}^{\prime}$ and $X_{C}^{\prime}$ are related as

1 $\mathrm{X}_{\mathrm{C}}^{\prime}=\frac{1}{4} \mathrm{X}_{\mathrm{L}}^{\prime}$
2 $X_{C}^{\prime}=2 X_{L}^{\prime}$
3 $\mathrm{X}_{\mathrm{C}}^{\prime}=\frac{1}{2} \mathrm{X}_{\mathrm{L}}^{\prime}$
4 $X_{C}^{\prime}=X_{L}^{\prime}$
Alternating Current

155133 An alternating e.m.f. of $0.2 \mathrm{~V}$ is applied across an LCR series circuit having $R=4 \Omega, C=80 \mu \mathrm{F}$ and $L=200 \mathrm{mH}$. At resonance the voltage drop across the inductor is

1 $2.5 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $1 \mathrm{~V}$
4 $10 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155126 In LCR circuit the inductance is changed from $L$ to $9 \mathrm{~L}$. For same resonant frequency the capacitance should be changed from $\mathrm{C}$ to

1 $9 \mathrm{C}$
2 $\frac{\mathrm{C}}{9}$
3 $\frac{\mathrm{C}}{3}$
4 $3 \mathrm{C}$
Alternating Current

155127 In an LCR circuit, inductive reactance is $30 \Omega$ and capacitive reactance $30 \Omega$. The resistance was found to be $40 \Omega$. The probable impedance of the combination is

1 $40 \Omega$
2 $60 \Omega$
3 $100 \Omega$
4 $20 \Omega$
Alternating Current

155130 The resonant frequency of a series LCR circuit is ' $f$ '. The circuit is now connected to the sinusoidally alternating e.m.f. of frequency ' $2 f$ '. The new reactance $X_{L}^{\prime}$ and $X_{C}^{\prime}$ are related as

1 $\mathrm{X}_{\mathrm{C}}^{\prime}=\frac{1}{4} \mathrm{X}_{\mathrm{L}}^{\prime}$
2 $X_{C}^{\prime}=2 X_{L}^{\prime}$
3 $\mathrm{X}_{\mathrm{C}}^{\prime}=\frac{1}{2} \mathrm{X}_{\mathrm{L}}^{\prime}$
4 $X_{C}^{\prime}=X_{L}^{\prime}$
Alternating Current

155133 An alternating e.m.f. of $0.2 \mathrm{~V}$ is applied across an LCR series circuit having $R=4 \Omega, C=80 \mu \mathrm{F}$ and $L=200 \mathrm{mH}$. At resonance the voltage drop across the inductor is

1 $2.5 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $1 \mathrm{~V}$
4 $10 \mathrm{~V}$
Alternating Current

155126 In LCR circuit the inductance is changed from $L$ to $9 \mathrm{~L}$. For same resonant frequency the capacitance should be changed from $\mathrm{C}$ to

1 $9 \mathrm{C}$
2 $\frac{\mathrm{C}}{9}$
3 $\frac{\mathrm{C}}{3}$
4 $3 \mathrm{C}$
Alternating Current

155127 In an LCR circuit, inductive reactance is $30 \Omega$ and capacitive reactance $30 \Omega$. The resistance was found to be $40 \Omega$. The probable impedance of the combination is

1 $40 \Omega$
2 $60 \Omega$
3 $100 \Omega$
4 $20 \Omega$
Alternating Current

155130 The resonant frequency of a series LCR circuit is ' $f$ '. The circuit is now connected to the sinusoidally alternating e.m.f. of frequency ' $2 f$ '. The new reactance $X_{L}^{\prime}$ and $X_{C}^{\prime}$ are related as

1 $\mathrm{X}_{\mathrm{C}}^{\prime}=\frac{1}{4} \mathrm{X}_{\mathrm{L}}^{\prime}$
2 $X_{C}^{\prime}=2 X_{L}^{\prime}$
3 $\mathrm{X}_{\mathrm{C}}^{\prime}=\frac{1}{2} \mathrm{X}_{\mathrm{L}}^{\prime}$
4 $X_{C}^{\prime}=X_{L}^{\prime}$
Alternating Current

155133 An alternating e.m.f. of $0.2 \mathrm{~V}$ is applied across an LCR series circuit having $R=4 \Omega, C=80 \mu \mathrm{F}$ and $L=200 \mathrm{mH}$. At resonance the voltage drop across the inductor is

1 $2.5 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $1 \mathrm{~V}$
4 $10 \mathrm{~V}$