02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155182 An alternating voltage $V=V_{0} \sin \omega t$ is connected to a capacitor of capacity $\mathrm{C}_{0}$ through an $\mathrm{AC}$ ammeter of zero resistance. The reading of ammeter is

1 $\frac{V_{0}}{\sqrt{2}}$
2 $\frac{\mathrm{V}_{0}}{\omega \mathrm{C} \sqrt{2}}$
3 $\frac{\mathrm{V}_{0} \omega \mathrm{C}}{\sqrt{2}}$
4 $\mathrm{V}_{0} \omega \mathrm{C}$
Alternating Current

155183 An electric motor which loaded has an effective resistance of $30 \Omega$ and an inductive reactance of $40 \Omega$. If the motor is powered by a source with maximum voltage of $420 \mathrm{~V}$, the maximum current is

1 $6 \mathrm{~A}$
2 $8.4 \mathrm{~A}$
3 $10 \mathrm{~A}$
4 $12 \mathrm{~A}$
5 $13 \mathrm{~A}$
Alternating Current

155184 An A.C voltage $V=5 \cos (1000 t) V$ is applied to a L-R series circuit of inductance $3 \mathrm{mH}$ and resistance $4 \Omega$. The value of maximum current in the circuit is A.

1 0.8
2 1.0
3 $\frac{5}{7}$
4 $\frac{5}{\sqrt{7}}$
Alternating Current

155185 A sinusoidal voltage of peak value $300 \mathrm{~V}$ and an angular frequency $\omega=400 \mathrm{rad} . / \mathrm{s}$, is applied to a series $L-C-R$ circuit, in which $R=3 \Omega$. $L=$ $20 \mathrm{mH}$ and $\mathrm{C}=625 \mu \mathrm{F}$. The peak current in the circuit is

1 $30 \sqrt{2} \mathrm{~A}$
2 $60 \mathrm{~A}$
3 $100 \mathrm{~A}$
4 $60 \sqrt{2} \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155182 An alternating voltage $V=V_{0} \sin \omega t$ is connected to a capacitor of capacity $\mathrm{C}_{0}$ through an $\mathrm{AC}$ ammeter of zero resistance. The reading of ammeter is

1 $\frac{V_{0}}{\sqrt{2}}$
2 $\frac{\mathrm{V}_{0}}{\omega \mathrm{C} \sqrt{2}}$
3 $\frac{\mathrm{V}_{0} \omega \mathrm{C}}{\sqrt{2}}$
4 $\mathrm{V}_{0} \omega \mathrm{C}$
Alternating Current

155183 An electric motor which loaded has an effective resistance of $30 \Omega$ and an inductive reactance of $40 \Omega$. If the motor is powered by a source with maximum voltage of $420 \mathrm{~V}$, the maximum current is

1 $6 \mathrm{~A}$
2 $8.4 \mathrm{~A}$
3 $10 \mathrm{~A}$
4 $12 \mathrm{~A}$
5 $13 \mathrm{~A}$
Alternating Current

155184 An A.C voltage $V=5 \cos (1000 t) V$ is applied to a L-R series circuit of inductance $3 \mathrm{mH}$ and resistance $4 \Omega$. The value of maximum current in the circuit is A.

1 0.8
2 1.0
3 $\frac{5}{7}$
4 $\frac{5}{\sqrt{7}}$
Alternating Current

155185 A sinusoidal voltage of peak value $300 \mathrm{~V}$ and an angular frequency $\omega=400 \mathrm{rad} . / \mathrm{s}$, is applied to a series $L-C-R$ circuit, in which $R=3 \Omega$. $L=$ $20 \mathrm{mH}$ and $\mathrm{C}=625 \mu \mathrm{F}$. The peak current in the circuit is

1 $30 \sqrt{2} \mathrm{~A}$
2 $60 \mathrm{~A}$
3 $100 \mathrm{~A}$
4 $60 \sqrt{2} \mathrm{~A}$
Alternating Current

155182 An alternating voltage $V=V_{0} \sin \omega t$ is connected to a capacitor of capacity $\mathrm{C}_{0}$ through an $\mathrm{AC}$ ammeter of zero resistance. The reading of ammeter is

1 $\frac{V_{0}}{\sqrt{2}}$
2 $\frac{\mathrm{V}_{0}}{\omega \mathrm{C} \sqrt{2}}$
3 $\frac{\mathrm{V}_{0} \omega \mathrm{C}}{\sqrt{2}}$
4 $\mathrm{V}_{0} \omega \mathrm{C}$
Alternating Current

155183 An electric motor which loaded has an effective resistance of $30 \Omega$ and an inductive reactance of $40 \Omega$. If the motor is powered by a source with maximum voltage of $420 \mathrm{~V}$, the maximum current is

1 $6 \mathrm{~A}$
2 $8.4 \mathrm{~A}$
3 $10 \mathrm{~A}$
4 $12 \mathrm{~A}$
5 $13 \mathrm{~A}$
Alternating Current

155184 An A.C voltage $V=5 \cos (1000 t) V$ is applied to a L-R series circuit of inductance $3 \mathrm{mH}$ and resistance $4 \Omega$. The value of maximum current in the circuit is A.

1 0.8
2 1.0
3 $\frac{5}{7}$
4 $\frac{5}{\sqrt{7}}$
Alternating Current

155185 A sinusoidal voltage of peak value $300 \mathrm{~V}$ and an angular frequency $\omega=400 \mathrm{rad} . / \mathrm{s}$, is applied to a series $L-C-R$ circuit, in which $R=3 \Omega$. $L=$ $20 \mathrm{mH}$ and $\mathrm{C}=625 \mu \mathrm{F}$. The peak current in the circuit is

1 $30 \sqrt{2} \mathrm{~A}$
2 $60 \mathrm{~A}$
3 $100 \mathrm{~A}$
4 $60 \sqrt{2} \mathrm{~A}$
Alternating Current

155182 An alternating voltage $V=V_{0} \sin \omega t$ is connected to a capacitor of capacity $\mathrm{C}_{0}$ through an $\mathrm{AC}$ ammeter of zero resistance. The reading of ammeter is

1 $\frac{V_{0}}{\sqrt{2}}$
2 $\frac{\mathrm{V}_{0}}{\omega \mathrm{C} \sqrt{2}}$
3 $\frac{\mathrm{V}_{0} \omega \mathrm{C}}{\sqrt{2}}$
4 $\mathrm{V}_{0} \omega \mathrm{C}$
Alternating Current

155183 An electric motor which loaded has an effective resistance of $30 \Omega$ and an inductive reactance of $40 \Omega$. If the motor is powered by a source with maximum voltage of $420 \mathrm{~V}$, the maximum current is

1 $6 \mathrm{~A}$
2 $8.4 \mathrm{~A}$
3 $10 \mathrm{~A}$
4 $12 \mathrm{~A}$
5 $13 \mathrm{~A}$
Alternating Current

155184 An A.C voltage $V=5 \cos (1000 t) V$ is applied to a L-R series circuit of inductance $3 \mathrm{mH}$ and resistance $4 \Omega$. The value of maximum current in the circuit is A.

1 0.8
2 1.0
3 $\frac{5}{7}$
4 $\frac{5}{\sqrt{7}}$
Alternating Current

155185 A sinusoidal voltage of peak value $300 \mathrm{~V}$ and an angular frequency $\omega=400 \mathrm{rad} . / \mathrm{s}$, is applied to a series $L-C-R$ circuit, in which $R=3 \Omega$. $L=$ $20 \mathrm{mH}$ and $\mathrm{C}=625 \mu \mathrm{F}$. The peak current in the circuit is

1 $30 \sqrt{2} \mathrm{~A}$
2 $60 \mathrm{~A}$
3 $100 \mathrm{~A}$
4 $60 \sqrt{2} \mathrm{~A}$