02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155096 In a series $L C R$ circuit, the inductance $L$ is 10 $m H$, capacitance $C$ is $1 \mu \mathrm{F}$ and resistance $R$ is $100 \Omega$. The frequency at which resonance occurs is :-

1 $15.9 \mathrm{kHz}$
2 $1.59 \mathrm{rad} / \mathrm{s}$
3 $1.59 \mathrm{kHz}$
4 $15.9 \mathrm{rad} / \mathrm{s}$
Alternating Current

155098 As per the given graph choose the correct representation for curve $A$ and curve $B$. \{Where $X_{C}=$ reactance of pure capacitive circuit connected with A.C. source
$X_{L}=$ reactance of pure inductive circuit connected with A.C. source
$\mathbf{R}=$ impedance of pure resistive circuit connected with A.C. source
$Z=$ Impedance of the LCR series circuit $\}$

1 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{R}$
2 $A=X_{L}, B=Z$
3 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{X}_{\mathrm{L}}$
4 $\mathrm{A}=\mathrm{X}_{\mathrm{L}}, \mathrm{B}=\mathrm{R}$
Alternating Current

155099 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
Alternating Current

155100 In the given circuit, rms value of current $\left(I_{\mathrm{rms}}\right)$ through the resistor $R$ is

1 $\frac{1}{2} \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $2 \sqrt{2 \mathrm{~A}}$
Alternating Current

155101 In an LC oscillator, if values of inductance and capacitance become twice and eight times, respectively, then the resonant frequency of oscillator becomes $x$ times its initial resonant frequency $\omega_{0}$. The value of $x$ is.

1 $1 / 4$
2 4
3 16
4 $1 / 16$
Alternating Current

155096 In a series $L C R$ circuit, the inductance $L$ is 10 $m H$, capacitance $C$ is $1 \mu \mathrm{F}$ and resistance $R$ is $100 \Omega$. The frequency at which resonance occurs is :-

1 $15.9 \mathrm{kHz}$
2 $1.59 \mathrm{rad} / \mathrm{s}$
3 $1.59 \mathrm{kHz}$
4 $15.9 \mathrm{rad} / \mathrm{s}$
Alternating Current

155098 As per the given graph choose the correct representation for curve $A$ and curve $B$. \{Where $X_{C}=$ reactance of pure capacitive circuit connected with A.C. source
$X_{L}=$ reactance of pure inductive circuit connected with A.C. source
$\mathbf{R}=$ impedance of pure resistive circuit connected with A.C. source
$Z=$ Impedance of the LCR series circuit $\}$

1 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{R}$
2 $A=X_{L}, B=Z$
3 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{X}_{\mathrm{L}}$
4 $\mathrm{A}=\mathrm{X}_{\mathrm{L}}, \mathrm{B}=\mathrm{R}$
Alternating Current

155099 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
Alternating Current

155100 In the given circuit, rms value of current $\left(I_{\mathrm{rms}}\right)$ through the resistor $R$ is

1 $\frac{1}{2} \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $2 \sqrt{2 \mathrm{~A}}$
Alternating Current

155101 In an LC oscillator, if values of inductance and capacitance become twice and eight times, respectively, then the resonant frequency of oscillator becomes $x$ times its initial resonant frequency $\omega_{0}$. The value of $x$ is.

1 $1 / 4$
2 4
3 16
4 $1 / 16$
Alternating Current

155096 In a series $L C R$ circuit, the inductance $L$ is 10 $m H$, capacitance $C$ is $1 \mu \mathrm{F}$ and resistance $R$ is $100 \Omega$. The frequency at which resonance occurs is :-

1 $15.9 \mathrm{kHz}$
2 $1.59 \mathrm{rad} / \mathrm{s}$
3 $1.59 \mathrm{kHz}$
4 $15.9 \mathrm{rad} / \mathrm{s}$
Alternating Current

155098 As per the given graph choose the correct representation for curve $A$ and curve $B$. \{Where $X_{C}=$ reactance of pure capacitive circuit connected with A.C. source
$X_{L}=$ reactance of pure inductive circuit connected with A.C. source
$\mathbf{R}=$ impedance of pure resistive circuit connected with A.C. source
$Z=$ Impedance of the LCR series circuit $\}$

1 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{R}$
2 $A=X_{L}, B=Z$
3 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{X}_{\mathrm{L}}$
4 $\mathrm{A}=\mathrm{X}_{\mathrm{L}}, \mathrm{B}=\mathrm{R}$
Alternating Current

155099 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
Alternating Current

155100 In the given circuit, rms value of current $\left(I_{\mathrm{rms}}\right)$ through the resistor $R$ is

1 $\frac{1}{2} \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $2 \sqrt{2 \mathrm{~A}}$
Alternating Current

155101 In an LC oscillator, if values of inductance and capacitance become twice and eight times, respectively, then the resonant frequency of oscillator becomes $x$ times its initial resonant frequency $\omega_{0}$. The value of $x$ is.

1 $1 / 4$
2 4
3 16
4 $1 / 16$
Alternating Current

155096 In a series $L C R$ circuit, the inductance $L$ is 10 $m H$, capacitance $C$ is $1 \mu \mathrm{F}$ and resistance $R$ is $100 \Omega$. The frequency at which resonance occurs is :-

1 $15.9 \mathrm{kHz}$
2 $1.59 \mathrm{rad} / \mathrm{s}$
3 $1.59 \mathrm{kHz}$
4 $15.9 \mathrm{rad} / \mathrm{s}$
Alternating Current

155098 As per the given graph choose the correct representation for curve $A$ and curve $B$. \{Where $X_{C}=$ reactance of pure capacitive circuit connected with A.C. source
$X_{L}=$ reactance of pure inductive circuit connected with A.C. source
$\mathbf{R}=$ impedance of pure resistive circuit connected with A.C. source
$Z=$ Impedance of the LCR series circuit $\}$

1 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{R}$
2 $A=X_{L}, B=Z$
3 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{X}_{\mathrm{L}}$
4 $\mathrm{A}=\mathrm{X}_{\mathrm{L}}, \mathrm{B}=\mathrm{R}$
Alternating Current

155099 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
Alternating Current

155100 In the given circuit, rms value of current $\left(I_{\mathrm{rms}}\right)$ through the resistor $R$ is

1 $\frac{1}{2} \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $2 \sqrt{2 \mathrm{~A}}$
Alternating Current

155101 In an LC oscillator, if values of inductance and capacitance become twice and eight times, respectively, then the resonant frequency of oscillator becomes $x$ times its initial resonant frequency $\omega_{0}$. The value of $x$ is.

1 $1 / 4$
2 4
3 16
4 $1 / 16$
Alternating Current

155096 In a series $L C R$ circuit, the inductance $L$ is 10 $m H$, capacitance $C$ is $1 \mu \mathrm{F}$ and resistance $R$ is $100 \Omega$. The frequency at which resonance occurs is :-

1 $15.9 \mathrm{kHz}$
2 $1.59 \mathrm{rad} / \mathrm{s}$
3 $1.59 \mathrm{kHz}$
4 $15.9 \mathrm{rad} / \mathrm{s}$
Alternating Current

155098 As per the given graph choose the correct representation for curve $A$ and curve $B$. \{Where $X_{C}=$ reactance of pure capacitive circuit connected with A.C. source
$X_{L}=$ reactance of pure inductive circuit connected with A.C. source
$\mathbf{R}=$ impedance of pure resistive circuit connected with A.C. source
$Z=$ Impedance of the LCR series circuit $\}$

1 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{R}$
2 $A=X_{L}, B=Z$
3 $\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{X}_{\mathrm{L}}$
4 $\mathrm{A}=\mathrm{X}_{\mathrm{L}}, \mathrm{B}=\mathrm{R}$
Alternating Current

155099 The current in resistance $R$ at resonance is

1 zero
2 minimum but finite
3 maximum but finite
4 infinite
Alternating Current

155100 In the given circuit, rms value of current $\left(I_{\mathrm{rms}}\right)$ through the resistor $R$ is

1 $\frac{1}{2} \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $2 \sqrt{2 \mathrm{~A}}$
Alternating Current

155101 In an LC oscillator, if values of inductance and capacitance become twice and eight times, respectively, then the resonant frequency of oscillator becomes $x$ times its initial resonant frequency $\omega_{0}$. The value of $x$ is.

1 $1 / 4$
2 4
3 16
4 $1 / 16$