03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154751 A rod of length $1 \mathrm{~m}$ is kept inclined at an angle of $60^{\circ}$ with the uniform magnetic field of $0.5 \mathrm{~T}$. If the rod is moved with a velocity $10 \mathrm{~m} . \mathrm{s}^{-1}$ perpendicular to the field, the induced emf is:

1 $10 \mathrm{~V}$
2 $7.5 \mathrm{~V}$
3 $4.33 \mathrm{~V}$
4 $2.55 \mathrm{~V}$
Electro Magnetic Induction

154752 When the current in a coil changes from $4 \mathrm{~A}$ to $8 \mathrm{~A}$ in $0.1 \mathrm{~s}$, an e.m.f. of $16 \mathrm{~V}$ is induced in it. Then find the coefficient of self-induction of the coil.

1 $0.2 \mathrm{H}$
2 $0.35 \mathrm{H}$
3 $0.4 \mathrm{H}$
4 $0.48 \mathrm{H}$
Electro Magnetic Induction

154753 The back e.m.f. induced in a coil, when current changes from $1 \mathrm{~A}$ to $0 \mathrm{~A}$ in 1 milli-second is 4 $\mathrm{V}$. The self-inductance of the coil is

1 $1 \mathrm{H}$
2 $4 \mathrm{H}$
3 $10^{-3} \mathrm{H}$
4 $4 \times 10^{-3} \mathrm{H}$
Electro Magnetic Induction

154754 The average emf induced in a coil, when the current in it changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$ in $0.05 \mathrm{~s}$. is 8V. Find the self-inductance of this coil.

1 $0.8 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.2 \mathrm{H}$
4 $0.1 \mathrm{H}$
Electro Magnetic Induction

154751 A rod of length $1 \mathrm{~m}$ is kept inclined at an angle of $60^{\circ}$ with the uniform magnetic field of $0.5 \mathrm{~T}$. If the rod is moved with a velocity $10 \mathrm{~m} . \mathrm{s}^{-1}$ perpendicular to the field, the induced emf is:

1 $10 \mathrm{~V}$
2 $7.5 \mathrm{~V}$
3 $4.33 \mathrm{~V}$
4 $2.55 \mathrm{~V}$
Electro Magnetic Induction

154752 When the current in a coil changes from $4 \mathrm{~A}$ to $8 \mathrm{~A}$ in $0.1 \mathrm{~s}$, an e.m.f. of $16 \mathrm{~V}$ is induced in it. Then find the coefficient of self-induction of the coil.

1 $0.2 \mathrm{H}$
2 $0.35 \mathrm{H}$
3 $0.4 \mathrm{H}$
4 $0.48 \mathrm{H}$
Electro Magnetic Induction

154753 The back e.m.f. induced in a coil, when current changes from $1 \mathrm{~A}$ to $0 \mathrm{~A}$ in 1 milli-second is 4 $\mathrm{V}$. The self-inductance of the coil is

1 $1 \mathrm{H}$
2 $4 \mathrm{H}$
3 $10^{-3} \mathrm{H}$
4 $4 \times 10^{-3} \mathrm{H}$
Electro Magnetic Induction

154754 The average emf induced in a coil, when the current in it changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$ in $0.05 \mathrm{~s}$. is 8V. Find the self-inductance of this coil.

1 $0.8 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.2 \mathrm{H}$
4 $0.1 \mathrm{H}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154751 A rod of length $1 \mathrm{~m}$ is kept inclined at an angle of $60^{\circ}$ with the uniform magnetic field of $0.5 \mathrm{~T}$. If the rod is moved with a velocity $10 \mathrm{~m} . \mathrm{s}^{-1}$ perpendicular to the field, the induced emf is:

1 $10 \mathrm{~V}$
2 $7.5 \mathrm{~V}$
3 $4.33 \mathrm{~V}$
4 $2.55 \mathrm{~V}$
Electro Magnetic Induction

154752 When the current in a coil changes from $4 \mathrm{~A}$ to $8 \mathrm{~A}$ in $0.1 \mathrm{~s}$, an e.m.f. of $16 \mathrm{~V}$ is induced in it. Then find the coefficient of self-induction of the coil.

1 $0.2 \mathrm{H}$
2 $0.35 \mathrm{H}$
3 $0.4 \mathrm{H}$
4 $0.48 \mathrm{H}$
Electro Magnetic Induction

154753 The back e.m.f. induced in a coil, when current changes from $1 \mathrm{~A}$ to $0 \mathrm{~A}$ in 1 milli-second is 4 $\mathrm{V}$. The self-inductance of the coil is

1 $1 \mathrm{H}$
2 $4 \mathrm{H}$
3 $10^{-3} \mathrm{H}$
4 $4 \times 10^{-3} \mathrm{H}$
Electro Magnetic Induction

154754 The average emf induced in a coil, when the current in it changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$ in $0.05 \mathrm{~s}$. is 8V. Find the self-inductance of this coil.

1 $0.8 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.2 \mathrm{H}$
4 $0.1 \mathrm{H}$
Electro Magnetic Induction

154751 A rod of length $1 \mathrm{~m}$ is kept inclined at an angle of $60^{\circ}$ with the uniform magnetic field of $0.5 \mathrm{~T}$. If the rod is moved with a velocity $10 \mathrm{~m} . \mathrm{s}^{-1}$ perpendicular to the field, the induced emf is:

1 $10 \mathrm{~V}$
2 $7.5 \mathrm{~V}$
3 $4.33 \mathrm{~V}$
4 $2.55 \mathrm{~V}$
Electro Magnetic Induction

154752 When the current in a coil changes from $4 \mathrm{~A}$ to $8 \mathrm{~A}$ in $0.1 \mathrm{~s}$, an e.m.f. of $16 \mathrm{~V}$ is induced in it. Then find the coefficient of self-induction of the coil.

1 $0.2 \mathrm{H}$
2 $0.35 \mathrm{H}$
3 $0.4 \mathrm{H}$
4 $0.48 \mathrm{H}$
Electro Magnetic Induction

154753 The back e.m.f. induced in a coil, when current changes from $1 \mathrm{~A}$ to $0 \mathrm{~A}$ in 1 milli-second is 4 $\mathrm{V}$. The self-inductance of the coil is

1 $1 \mathrm{H}$
2 $4 \mathrm{H}$
3 $10^{-3} \mathrm{H}$
4 $4 \times 10^{-3} \mathrm{H}$
Electro Magnetic Induction

154754 The average emf induced in a coil, when the current in it changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$ in $0.05 \mathrm{~s}$. is 8V. Find the self-inductance of this coil.

1 $0.8 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.2 \mathrm{H}$
4 $0.1 \mathrm{H}$