154758
When two coils of self-inductance $L$ each are connected in parallel, their equivalent selfinductance will be
1 zero
2 $2 \mathrm{~L}$
3 $\mathrm{L}$
4 $\frac{\mathrm{L}}{2}$
Explanation:
D $\mathrm{L}_{\text {eq }}=\frac{\mathrm{L} \times \mathrm{L}}{\mathrm{L}+\mathrm{L}}=\frac{\mathrm{L}^{2}}{2 \mathrm{~L}}=\frac{\mathrm{L}}{2}$ $\mathrm{~L}_{\text {eq }}=\frac{\mathrm{L}}{2}$
Tripura-2020
Electro Magnetic Induction
154759
The coils are placed close to each other. The mutual inductance of the pair of coils depends upon
1 the rates at which currents are changing in the two coils simultaneously
2 relative position and orientation of the two coils
3 the materials of the wires of the coils
4 the current in the two coils
Explanation:
B $\mathrm{M}_{12}=\mathrm{N}_{2}=\frac{\phi_{21}}{l_{1}}$ $\phi_{21}$ flux induced in coil 2 due to the change in current $\left(\mathrm{i}_{1}\right)$ in coil 1 $\mathrm{N}_{2}=$ number of turn in coil 2 Therefore the mutual inductance between a pair of coil when placed close to each other depends upon the relative position and orientation of the two coils.
TS EAMCET 28.09.2020
Electro Magnetic Induction
154760
The current in a coil of inductance $0.2 \mathrm{H}$ changes from $5 \mathrm{~A}$ to $2 \mathrm{~A}$ in $0.5 \mathrm{~s}$. The magnitude of the average induced emf in the coil is :
1 $0.6 \mathrm{~V}$
2 $1.2 \mathrm{~V}$
3 $30 \mathrm{~V}$
4 $0.3 \mathrm{~V}$
Explanation:
B Inductance $\mathrm{L}=0.2 \mathrm{H}$ Change in current $=\Delta \mathrm{I}=5-2=3 \mathrm{~A}$ Time $\mathrm{t}=0.5 \mathrm{~s}$ Induced emf $\varepsilon=\mathrm{L} \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}=\frac{0.2 \times 3}{0.5}=\frac{6}{5}=1.2 \mathrm{~V}$ $\varepsilon=1.2 \mathrm{~V}$
Karnataka CET-2020
Electro Magnetic Induction
154766
If ' $N$ ' is the number of turns in a circular coil, the value of its self inductance varies as
1 $\mathrm{N}^{\circ}$
2 $\mathrm{N}^{3}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{1}$
Explanation:
C We know that self inductance is given as, $\mathrm{I}=\frac{\mu_{\mathrm{o}} \mathrm{N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$ $\therefore \quad \mathrm{I} \propto \mathrm{N}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Electro Magnetic Induction
154758
When two coils of self-inductance $L$ each are connected in parallel, their equivalent selfinductance will be
1 zero
2 $2 \mathrm{~L}$
3 $\mathrm{L}$
4 $\frac{\mathrm{L}}{2}$
Explanation:
D $\mathrm{L}_{\text {eq }}=\frac{\mathrm{L} \times \mathrm{L}}{\mathrm{L}+\mathrm{L}}=\frac{\mathrm{L}^{2}}{2 \mathrm{~L}}=\frac{\mathrm{L}}{2}$ $\mathrm{~L}_{\text {eq }}=\frac{\mathrm{L}}{2}$
Tripura-2020
Electro Magnetic Induction
154759
The coils are placed close to each other. The mutual inductance of the pair of coils depends upon
1 the rates at which currents are changing in the two coils simultaneously
2 relative position and orientation of the two coils
3 the materials of the wires of the coils
4 the current in the two coils
Explanation:
B $\mathrm{M}_{12}=\mathrm{N}_{2}=\frac{\phi_{21}}{l_{1}}$ $\phi_{21}$ flux induced in coil 2 due to the change in current $\left(\mathrm{i}_{1}\right)$ in coil 1 $\mathrm{N}_{2}=$ number of turn in coil 2 Therefore the mutual inductance between a pair of coil when placed close to each other depends upon the relative position and orientation of the two coils.
TS EAMCET 28.09.2020
Electro Magnetic Induction
154760
The current in a coil of inductance $0.2 \mathrm{H}$ changes from $5 \mathrm{~A}$ to $2 \mathrm{~A}$ in $0.5 \mathrm{~s}$. The magnitude of the average induced emf in the coil is :
1 $0.6 \mathrm{~V}$
2 $1.2 \mathrm{~V}$
3 $30 \mathrm{~V}$
4 $0.3 \mathrm{~V}$
Explanation:
B Inductance $\mathrm{L}=0.2 \mathrm{H}$ Change in current $=\Delta \mathrm{I}=5-2=3 \mathrm{~A}$ Time $\mathrm{t}=0.5 \mathrm{~s}$ Induced emf $\varepsilon=\mathrm{L} \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}=\frac{0.2 \times 3}{0.5}=\frac{6}{5}=1.2 \mathrm{~V}$ $\varepsilon=1.2 \mathrm{~V}$
Karnataka CET-2020
Electro Magnetic Induction
154766
If ' $N$ ' is the number of turns in a circular coil, the value of its self inductance varies as
1 $\mathrm{N}^{\circ}$
2 $\mathrm{N}^{3}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{1}$
Explanation:
C We know that self inductance is given as, $\mathrm{I}=\frac{\mu_{\mathrm{o}} \mathrm{N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$ $\therefore \quad \mathrm{I} \propto \mathrm{N}^{2}$
154758
When two coils of self-inductance $L$ each are connected in parallel, their equivalent selfinductance will be
1 zero
2 $2 \mathrm{~L}$
3 $\mathrm{L}$
4 $\frac{\mathrm{L}}{2}$
Explanation:
D $\mathrm{L}_{\text {eq }}=\frac{\mathrm{L} \times \mathrm{L}}{\mathrm{L}+\mathrm{L}}=\frac{\mathrm{L}^{2}}{2 \mathrm{~L}}=\frac{\mathrm{L}}{2}$ $\mathrm{~L}_{\text {eq }}=\frac{\mathrm{L}}{2}$
Tripura-2020
Electro Magnetic Induction
154759
The coils are placed close to each other. The mutual inductance of the pair of coils depends upon
1 the rates at which currents are changing in the two coils simultaneously
2 relative position and orientation of the two coils
3 the materials of the wires of the coils
4 the current in the two coils
Explanation:
B $\mathrm{M}_{12}=\mathrm{N}_{2}=\frac{\phi_{21}}{l_{1}}$ $\phi_{21}$ flux induced in coil 2 due to the change in current $\left(\mathrm{i}_{1}\right)$ in coil 1 $\mathrm{N}_{2}=$ number of turn in coil 2 Therefore the mutual inductance between a pair of coil when placed close to each other depends upon the relative position and orientation of the two coils.
TS EAMCET 28.09.2020
Electro Magnetic Induction
154760
The current in a coil of inductance $0.2 \mathrm{H}$ changes from $5 \mathrm{~A}$ to $2 \mathrm{~A}$ in $0.5 \mathrm{~s}$. The magnitude of the average induced emf in the coil is :
1 $0.6 \mathrm{~V}$
2 $1.2 \mathrm{~V}$
3 $30 \mathrm{~V}$
4 $0.3 \mathrm{~V}$
Explanation:
B Inductance $\mathrm{L}=0.2 \mathrm{H}$ Change in current $=\Delta \mathrm{I}=5-2=3 \mathrm{~A}$ Time $\mathrm{t}=0.5 \mathrm{~s}$ Induced emf $\varepsilon=\mathrm{L} \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}=\frac{0.2 \times 3}{0.5}=\frac{6}{5}=1.2 \mathrm{~V}$ $\varepsilon=1.2 \mathrm{~V}$
Karnataka CET-2020
Electro Magnetic Induction
154766
If ' $N$ ' is the number of turns in a circular coil, the value of its self inductance varies as
1 $\mathrm{N}^{\circ}$
2 $\mathrm{N}^{3}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{1}$
Explanation:
C We know that self inductance is given as, $\mathrm{I}=\frac{\mu_{\mathrm{o}} \mathrm{N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$ $\therefore \quad \mathrm{I} \propto \mathrm{N}^{2}$
154758
When two coils of self-inductance $L$ each are connected in parallel, their equivalent selfinductance will be
1 zero
2 $2 \mathrm{~L}$
3 $\mathrm{L}$
4 $\frac{\mathrm{L}}{2}$
Explanation:
D $\mathrm{L}_{\text {eq }}=\frac{\mathrm{L} \times \mathrm{L}}{\mathrm{L}+\mathrm{L}}=\frac{\mathrm{L}^{2}}{2 \mathrm{~L}}=\frac{\mathrm{L}}{2}$ $\mathrm{~L}_{\text {eq }}=\frac{\mathrm{L}}{2}$
Tripura-2020
Electro Magnetic Induction
154759
The coils are placed close to each other. The mutual inductance of the pair of coils depends upon
1 the rates at which currents are changing in the two coils simultaneously
2 relative position and orientation of the two coils
3 the materials of the wires of the coils
4 the current in the two coils
Explanation:
B $\mathrm{M}_{12}=\mathrm{N}_{2}=\frac{\phi_{21}}{l_{1}}$ $\phi_{21}$ flux induced in coil 2 due to the change in current $\left(\mathrm{i}_{1}\right)$ in coil 1 $\mathrm{N}_{2}=$ number of turn in coil 2 Therefore the mutual inductance between a pair of coil when placed close to each other depends upon the relative position and orientation of the two coils.
TS EAMCET 28.09.2020
Electro Magnetic Induction
154760
The current in a coil of inductance $0.2 \mathrm{H}$ changes from $5 \mathrm{~A}$ to $2 \mathrm{~A}$ in $0.5 \mathrm{~s}$. The magnitude of the average induced emf in the coil is :
1 $0.6 \mathrm{~V}$
2 $1.2 \mathrm{~V}$
3 $30 \mathrm{~V}$
4 $0.3 \mathrm{~V}$
Explanation:
B Inductance $\mathrm{L}=0.2 \mathrm{H}$ Change in current $=\Delta \mathrm{I}=5-2=3 \mathrm{~A}$ Time $\mathrm{t}=0.5 \mathrm{~s}$ Induced emf $\varepsilon=\mathrm{L} \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}=\frac{0.2 \times 3}{0.5}=\frac{6}{5}=1.2 \mathrm{~V}$ $\varepsilon=1.2 \mathrm{~V}$
Karnataka CET-2020
Electro Magnetic Induction
154766
If ' $N$ ' is the number of turns in a circular coil, the value of its self inductance varies as
1 $\mathrm{N}^{\circ}$
2 $\mathrm{N}^{3}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{1}$
Explanation:
C We know that self inductance is given as, $\mathrm{I}=\frac{\mu_{\mathrm{o}} \mathrm{N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$ $\therefore \quad \mathrm{I} \propto \mathrm{N}^{2}$