03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154913 The mass of a ferromagnetic material is $100 \mathrm{~g}$ and its magnetic moment is $10 \mathrm{~A} \mathrm{~m}^{2}$. If the density of the material is $10 \mathrm{~g} / \mathrm{cc}$, the intensity of magnetization is given by

1 $10^{8} \mathrm{~A} / \mathrm{m}$
2 $10^{6} \mathrm{~A} / \mathrm{m}$
3 $10^{4} \mathrm{~A} / \mathrm{m}$
4 $10^{2} \mathrm{~A} / \mathrm{m}$
Electro Magnetic Induction

154914 The energy stored in a coil of self inductance 40 mH carrying a steady current of $2 \mathrm{~A}$ is

1 $0.08 \mathrm{~J}$
2 $0.8 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $8 \mathrm{~J}$
Electro Magnetic Induction

154915 If the inductance of a coil is 1 Henry, its effective resistance in a DC circuit will be

1 $\infty$
2 zero
3 $1 \Omega$
4 $2 \Omega$
Electro Magnetic Induction

154916 Dimensions of self inductance are

1 $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
2 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{~A}^{-2}\right]$
3 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
4 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$
Electro Magnetic Induction

154913 The mass of a ferromagnetic material is $100 \mathrm{~g}$ and its magnetic moment is $10 \mathrm{~A} \mathrm{~m}^{2}$. If the density of the material is $10 \mathrm{~g} / \mathrm{cc}$, the intensity of magnetization is given by

1 $10^{8} \mathrm{~A} / \mathrm{m}$
2 $10^{6} \mathrm{~A} / \mathrm{m}$
3 $10^{4} \mathrm{~A} / \mathrm{m}$
4 $10^{2} \mathrm{~A} / \mathrm{m}$
Electro Magnetic Induction

154914 The energy stored in a coil of self inductance 40 mH carrying a steady current of $2 \mathrm{~A}$ is

1 $0.08 \mathrm{~J}$
2 $0.8 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $8 \mathrm{~J}$
Electro Magnetic Induction

154915 If the inductance of a coil is 1 Henry, its effective resistance in a DC circuit will be

1 $\infty$
2 zero
3 $1 \Omega$
4 $2 \Omega$
Electro Magnetic Induction

154916 Dimensions of self inductance are

1 $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
2 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{~A}^{-2}\right]$
3 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
4 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$
Electro Magnetic Induction

154913 The mass of a ferromagnetic material is $100 \mathrm{~g}$ and its magnetic moment is $10 \mathrm{~A} \mathrm{~m}^{2}$. If the density of the material is $10 \mathrm{~g} / \mathrm{cc}$, the intensity of magnetization is given by

1 $10^{8} \mathrm{~A} / \mathrm{m}$
2 $10^{6} \mathrm{~A} / \mathrm{m}$
3 $10^{4} \mathrm{~A} / \mathrm{m}$
4 $10^{2} \mathrm{~A} / \mathrm{m}$
Electro Magnetic Induction

154914 The energy stored in a coil of self inductance 40 mH carrying a steady current of $2 \mathrm{~A}$ is

1 $0.08 \mathrm{~J}$
2 $0.8 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $8 \mathrm{~J}$
Electro Magnetic Induction

154915 If the inductance of a coil is 1 Henry, its effective resistance in a DC circuit will be

1 $\infty$
2 zero
3 $1 \Omega$
4 $2 \Omega$
Electro Magnetic Induction

154916 Dimensions of self inductance are

1 $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
2 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{~A}^{-2}\right]$
3 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
4 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$
Electro Magnetic Induction

154913 The mass of a ferromagnetic material is $100 \mathrm{~g}$ and its magnetic moment is $10 \mathrm{~A} \mathrm{~m}^{2}$. If the density of the material is $10 \mathrm{~g} / \mathrm{cc}$, the intensity of magnetization is given by

1 $10^{8} \mathrm{~A} / \mathrm{m}$
2 $10^{6} \mathrm{~A} / \mathrm{m}$
3 $10^{4} \mathrm{~A} / \mathrm{m}$
4 $10^{2} \mathrm{~A} / \mathrm{m}$
Electro Magnetic Induction

154914 The energy stored in a coil of self inductance 40 mH carrying a steady current of $2 \mathrm{~A}$ is

1 $0.08 \mathrm{~J}$
2 $0.8 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $8 \mathrm{~J}$
Electro Magnetic Induction

154915 If the inductance of a coil is 1 Henry, its effective resistance in a DC circuit will be

1 $\infty$
2 zero
3 $1 \Omega$
4 $2 \Omega$
Electro Magnetic Induction

154916 Dimensions of self inductance are

1 $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
2 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{~A}^{-2}\right]$
3 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
4 $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$