03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154722 The magnetic energy stored in an inductor of inductance $4 \mu \mathrm{H}$ carrying a current of $2 \mathrm{~A}$ is:

1 $4 \mathrm{~mJ}$
2 $8 \mathrm{~mJ}$
3 $8 \mu \mathrm{J}$
4 $4 \mu \mathrm{J}$
Electro Magnetic Induction

154723 A $12 \mathrm{~V}$ battery connected to a coil of resistance $6 \Omega$ through a switch, drives a constant current in the circuit. The switch is opened in $1 \mathrm{~ms}$. The emf induced across the coil is $20 \mathrm{~V}$. The inductance of the coil is:

1 $5 \mathrm{mH}$
2 $12 \mathrm{mH}$
3 $8 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154725 Find the mutual inductance in the arrangement, when a small circular loop of wire of radius ' $R$ ' is placed inside a large square loop of wire of side $L(L>>R)$. The loops are coplanar and their centers coincide:

1 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
2 $\mathrm{M}=\frac{\sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
3 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
4 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
Electro Magnetic Induction

154726 A magnetic field of flux density $1.0 \mathrm{~Wb} \mathrm{~m}^{-2}$ acts normal to a 80 turn coil of $0.01 \mathrm{~m}^2$ area. If this coil is removed from the field in 0.2 second, the emf induced in it is

1 $0.8 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $4 \mathrm{~V}$
4 $8 \mathrm{~V}$
Electro Magnetic Induction

154728 A long solenoid has 500 turns. When a current of $2 \mathrm{~A}$ is passed through it, the resulting magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} \mathrm{~Wb}$. The self-inductance of the solenoid is

1 $2.5 \mathrm{H}$
2 $2 \mathrm{H}$
3 $1 \mathrm{H}$
4 $4 \mathrm{H}$
Electro Magnetic Induction

154722 The magnetic energy stored in an inductor of inductance $4 \mu \mathrm{H}$ carrying a current of $2 \mathrm{~A}$ is:

1 $4 \mathrm{~mJ}$
2 $8 \mathrm{~mJ}$
3 $8 \mu \mathrm{J}$
4 $4 \mu \mathrm{J}$
Electro Magnetic Induction

154723 A $12 \mathrm{~V}$ battery connected to a coil of resistance $6 \Omega$ through a switch, drives a constant current in the circuit. The switch is opened in $1 \mathrm{~ms}$. The emf induced across the coil is $20 \mathrm{~V}$. The inductance of the coil is:

1 $5 \mathrm{mH}$
2 $12 \mathrm{mH}$
3 $8 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154725 Find the mutual inductance in the arrangement, when a small circular loop of wire of radius ' $R$ ' is placed inside a large square loop of wire of side $L(L>>R)$. The loops are coplanar and their centers coincide:

1 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
2 $\mathrm{M}=\frac{\sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
3 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
4 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
Electro Magnetic Induction

154726 A magnetic field of flux density $1.0 \mathrm{~Wb} \mathrm{~m}^{-2}$ acts normal to a 80 turn coil of $0.01 \mathrm{~m}^2$ area. If this coil is removed from the field in 0.2 second, the emf induced in it is

1 $0.8 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $4 \mathrm{~V}$
4 $8 \mathrm{~V}$
Electro Magnetic Induction

154728 A long solenoid has 500 turns. When a current of $2 \mathrm{~A}$ is passed through it, the resulting magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} \mathrm{~Wb}$. The self-inductance of the solenoid is

1 $2.5 \mathrm{H}$
2 $2 \mathrm{H}$
3 $1 \mathrm{H}$
4 $4 \mathrm{H}$
Electro Magnetic Induction

154722 The magnetic energy stored in an inductor of inductance $4 \mu \mathrm{H}$ carrying a current of $2 \mathrm{~A}$ is:

1 $4 \mathrm{~mJ}$
2 $8 \mathrm{~mJ}$
3 $8 \mu \mathrm{J}$
4 $4 \mu \mathrm{J}$
Electro Magnetic Induction

154723 A $12 \mathrm{~V}$ battery connected to a coil of resistance $6 \Omega$ through a switch, drives a constant current in the circuit. The switch is opened in $1 \mathrm{~ms}$. The emf induced across the coil is $20 \mathrm{~V}$. The inductance of the coil is:

1 $5 \mathrm{mH}$
2 $12 \mathrm{mH}$
3 $8 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154725 Find the mutual inductance in the arrangement, when a small circular loop of wire of radius ' $R$ ' is placed inside a large square loop of wire of side $L(L>>R)$. The loops are coplanar and their centers coincide:

1 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
2 $\mathrm{M}=\frac{\sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
3 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
4 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
Electro Magnetic Induction

154726 A magnetic field of flux density $1.0 \mathrm{~Wb} \mathrm{~m}^{-2}$ acts normal to a 80 turn coil of $0.01 \mathrm{~m}^2$ area. If this coil is removed from the field in 0.2 second, the emf induced in it is

1 $0.8 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $4 \mathrm{~V}$
4 $8 \mathrm{~V}$
Electro Magnetic Induction

154728 A long solenoid has 500 turns. When a current of $2 \mathrm{~A}$ is passed through it, the resulting magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} \mathrm{~Wb}$. The self-inductance of the solenoid is

1 $2.5 \mathrm{H}$
2 $2 \mathrm{H}$
3 $1 \mathrm{H}$
4 $4 \mathrm{H}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154722 The magnetic energy stored in an inductor of inductance $4 \mu \mathrm{H}$ carrying a current of $2 \mathrm{~A}$ is:

1 $4 \mathrm{~mJ}$
2 $8 \mathrm{~mJ}$
3 $8 \mu \mathrm{J}$
4 $4 \mu \mathrm{J}$
Electro Magnetic Induction

154723 A $12 \mathrm{~V}$ battery connected to a coil of resistance $6 \Omega$ through a switch, drives a constant current in the circuit. The switch is opened in $1 \mathrm{~ms}$. The emf induced across the coil is $20 \mathrm{~V}$. The inductance of the coil is:

1 $5 \mathrm{mH}$
2 $12 \mathrm{mH}$
3 $8 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154725 Find the mutual inductance in the arrangement, when a small circular loop of wire of radius ' $R$ ' is placed inside a large square loop of wire of side $L(L>>R)$. The loops are coplanar and their centers coincide:

1 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
2 $\mathrm{M}=\frac{\sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
3 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
4 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
Electro Magnetic Induction

154726 A magnetic field of flux density $1.0 \mathrm{~Wb} \mathrm{~m}^{-2}$ acts normal to a 80 turn coil of $0.01 \mathrm{~m}^2$ area. If this coil is removed from the field in 0.2 second, the emf induced in it is

1 $0.8 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $4 \mathrm{~V}$
4 $8 \mathrm{~V}$
Electro Magnetic Induction

154728 A long solenoid has 500 turns. When a current of $2 \mathrm{~A}$ is passed through it, the resulting magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} \mathrm{~Wb}$. The self-inductance of the solenoid is

1 $2.5 \mathrm{H}$
2 $2 \mathrm{H}$
3 $1 \mathrm{H}$
4 $4 \mathrm{H}$
Electro Magnetic Induction

154722 The magnetic energy stored in an inductor of inductance $4 \mu \mathrm{H}$ carrying a current of $2 \mathrm{~A}$ is:

1 $4 \mathrm{~mJ}$
2 $8 \mathrm{~mJ}$
3 $8 \mu \mathrm{J}$
4 $4 \mu \mathrm{J}$
Electro Magnetic Induction

154723 A $12 \mathrm{~V}$ battery connected to a coil of resistance $6 \Omega$ through a switch, drives a constant current in the circuit. The switch is opened in $1 \mathrm{~ms}$. The emf induced across the coil is $20 \mathrm{~V}$. The inductance of the coil is:

1 $5 \mathrm{mH}$
2 $12 \mathrm{mH}$
3 $8 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154725 Find the mutual inductance in the arrangement, when a small circular loop of wire of radius ' $R$ ' is placed inside a large square loop of wire of side $L(L>>R)$. The loops are coplanar and their centers coincide:

1 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
2 $\mathrm{M}=\frac{\sqrt{2} \mu_{0} \mathrm{R}^{2}}{\mathrm{~L}}$
3 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
4 $\mathrm{M}=\frac{2 \sqrt{2} \mu_{0} \mathrm{R}}{\mathrm{L}^{2}}$
Electro Magnetic Induction

154726 A magnetic field of flux density $1.0 \mathrm{~Wb} \mathrm{~m}^{-2}$ acts normal to a 80 turn coil of $0.01 \mathrm{~m}^2$ area. If this coil is removed from the field in 0.2 second, the emf induced in it is

1 $0.8 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $4 \mathrm{~V}$
4 $8 \mathrm{~V}$
Electro Magnetic Induction

154728 A long solenoid has 500 turns. When a current of $2 \mathrm{~A}$ is passed through it, the resulting magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} \mathrm{~Wb}$. The self-inductance of the solenoid is

1 $2.5 \mathrm{H}$
2 $2 \mathrm{H}$
3 $1 \mathrm{H}$
4 $4 \mathrm{H}$