00. Magnetic Flux, Faraday's Law
Electro Magnetic Induction

154520 A current carrying circular loop is perpendicular to a magnetic field of induction $10^{-4} \mathrm{~T}$. If the radius of the loop starts shrinking at a uniform rate of $2 \mathrm{mms}^{-1}$, then the emf induced in the loop at the instant, when its radius is $20 \mathrm{~cm}$ will be

1 $0.02 \pi \mu \mathrm{V}$
2 $0.08 \pi \mu \mathrm{V}$
3 $0.03 \pi \mu \mathrm{V}$
4 $0.05 \pi \mu \mathrm{V}$
Electro Magnetic Induction

154521 The magnetic flux linked with a coil, in Weber's, is given by the equation $\phi=3 t^{2}+4 t+9$
Then, the magnitude of induced emf at $t=2 \mathrm{~s}$ will be

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $16 \mathrm{~V}$
Electro Magnetic Induction

154522 The magnetic field of an electromagnetic-wave obeys the relation in a certain region is $B=10^{-}$ ${ }^{12} \sin \left(5 \times 10^{6} t\right) \mathrm{T}$, where $t$ is the time. Then, the induced emf, in a 300 turns in coil of area 20 $\mathbf{c m}^{2}$ oriented perpendicular to the field is

1 $-2 \times 10^{-5} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
2 $-3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
3 $-2.5 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
4 $-3.3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
Electro Magnetic Induction

154523 A $10 \Omega$ coil of 180 turns and diameter $4 \mathrm{~cm}$ is placed in a uniform magnetic field so that the magnetic flux is maximum through the coil's cross-sectional area. When the field is suddenly removed a charge of $360 \mu \mathrm{C}$ flows through a $618 \Omega$ galvanometer connected to the coil, find the magnetic field.

1 $12 \mathrm{~T}$
2 $6 \mathrm{~T}$
3 $1 \mathrm{~T}$
4 $8 \mathrm{~T}$
Electro Magnetic Induction

154524 The frequency of the charged particle circular at right angles to a uniform magnetic field does not depend upon the

1 speed of the particle
2 mass of the particle
3 charge of the particle
4 magnetic field
[SRM JEE-2018]
Electro Magnetic Induction

154520 A current carrying circular loop is perpendicular to a magnetic field of induction $10^{-4} \mathrm{~T}$. If the radius of the loop starts shrinking at a uniform rate of $2 \mathrm{mms}^{-1}$, then the emf induced in the loop at the instant, when its radius is $20 \mathrm{~cm}$ will be

1 $0.02 \pi \mu \mathrm{V}$
2 $0.08 \pi \mu \mathrm{V}$
3 $0.03 \pi \mu \mathrm{V}$
4 $0.05 \pi \mu \mathrm{V}$
Electro Magnetic Induction

154521 The magnetic flux linked with a coil, in Weber's, is given by the equation $\phi=3 t^{2}+4 t+9$
Then, the magnitude of induced emf at $t=2 \mathrm{~s}$ will be

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $16 \mathrm{~V}$
Electro Magnetic Induction

154522 The magnetic field of an electromagnetic-wave obeys the relation in a certain region is $B=10^{-}$ ${ }^{12} \sin \left(5 \times 10^{6} t\right) \mathrm{T}$, where $t$ is the time. Then, the induced emf, in a 300 turns in coil of area 20 $\mathbf{c m}^{2}$ oriented perpendicular to the field is

1 $-2 \times 10^{-5} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
2 $-3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
3 $-2.5 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
4 $-3.3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
Electro Magnetic Induction

154523 A $10 \Omega$ coil of 180 turns and diameter $4 \mathrm{~cm}$ is placed in a uniform magnetic field so that the magnetic flux is maximum through the coil's cross-sectional area. When the field is suddenly removed a charge of $360 \mu \mathrm{C}$ flows through a $618 \Omega$ galvanometer connected to the coil, find the magnetic field.

1 $12 \mathrm{~T}$
2 $6 \mathrm{~T}$
3 $1 \mathrm{~T}$
4 $8 \mathrm{~T}$
Electro Magnetic Induction

154524 The frequency of the charged particle circular at right angles to a uniform magnetic field does not depend upon the

1 speed of the particle
2 mass of the particle
3 charge of the particle
4 magnetic field
[SRM JEE-2018]
Electro Magnetic Induction

154520 A current carrying circular loop is perpendicular to a magnetic field of induction $10^{-4} \mathrm{~T}$. If the radius of the loop starts shrinking at a uniform rate of $2 \mathrm{mms}^{-1}$, then the emf induced in the loop at the instant, when its radius is $20 \mathrm{~cm}$ will be

1 $0.02 \pi \mu \mathrm{V}$
2 $0.08 \pi \mu \mathrm{V}$
3 $0.03 \pi \mu \mathrm{V}$
4 $0.05 \pi \mu \mathrm{V}$
Electro Magnetic Induction

154521 The magnetic flux linked with a coil, in Weber's, is given by the equation $\phi=3 t^{2}+4 t+9$
Then, the magnitude of induced emf at $t=2 \mathrm{~s}$ will be

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $16 \mathrm{~V}$
Electro Magnetic Induction

154522 The magnetic field of an electromagnetic-wave obeys the relation in a certain region is $B=10^{-}$ ${ }^{12} \sin \left(5 \times 10^{6} t\right) \mathrm{T}$, where $t$ is the time. Then, the induced emf, in a 300 turns in coil of area 20 $\mathbf{c m}^{2}$ oriented perpendicular to the field is

1 $-2 \times 10^{-5} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
2 $-3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
3 $-2.5 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
4 $-3.3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
Electro Magnetic Induction

154523 A $10 \Omega$ coil of 180 turns and diameter $4 \mathrm{~cm}$ is placed in a uniform magnetic field so that the magnetic flux is maximum through the coil's cross-sectional area. When the field is suddenly removed a charge of $360 \mu \mathrm{C}$ flows through a $618 \Omega$ galvanometer connected to the coil, find the magnetic field.

1 $12 \mathrm{~T}$
2 $6 \mathrm{~T}$
3 $1 \mathrm{~T}$
4 $8 \mathrm{~T}$
Electro Magnetic Induction

154524 The frequency of the charged particle circular at right angles to a uniform magnetic field does not depend upon the

1 speed of the particle
2 mass of the particle
3 charge of the particle
4 magnetic field
[SRM JEE-2018]
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154520 A current carrying circular loop is perpendicular to a magnetic field of induction $10^{-4} \mathrm{~T}$. If the radius of the loop starts shrinking at a uniform rate of $2 \mathrm{mms}^{-1}$, then the emf induced in the loop at the instant, when its radius is $20 \mathrm{~cm}$ will be

1 $0.02 \pi \mu \mathrm{V}$
2 $0.08 \pi \mu \mathrm{V}$
3 $0.03 \pi \mu \mathrm{V}$
4 $0.05 \pi \mu \mathrm{V}$
Electro Magnetic Induction

154521 The magnetic flux linked with a coil, in Weber's, is given by the equation $\phi=3 t^{2}+4 t+9$
Then, the magnitude of induced emf at $t=2 \mathrm{~s}$ will be

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $16 \mathrm{~V}$
Electro Magnetic Induction

154522 The magnetic field of an electromagnetic-wave obeys the relation in a certain region is $B=10^{-}$ ${ }^{12} \sin \left(5 \times 10^{6} t\right) \mathrm{T}$, where $t$ is the time. Then, the induced emf, in a 300 turns in coil of area 20 $\mathbf{c m}^{2}$ oriented perpendicular to the field is

1 $-2 \times 10^{-5} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
2 $-3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
3 $-2.5 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
4 $-3.3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
Electro Magnetic Induction

154523 A $10 \Omega$ coil of 180 turns and diameter $4 \mathrm{~cm}$ is placed in a uniform magnetic field so that the magnetic flux is maximum through the coil's cross-sectional area. When the field is suddenly removed a charge of $360 \mu \mathrm{C}$ flows through a $618 \Omega$ galvanometer connected to the coil, find the magnetic field.

1 $12 \mathrm{~T}$
2 $6 \mathrm{~T}$
3 $1 \mathrm{~T}$
4 $8 \mathrm{~T}$
Electro Magnetic Induction

154524 The frequency of the charged particle circular at right angles to a uniform magnetic field does not depend upon the

1 speed of the particle
2 mass of the particle
3 charge of the particle
4 magnetic field
[SRM JEE-2018]
Electro Magnetic Induction

154520 A current carrying circular loop is perpendicular to a magnetic field of induction $10^{-4} \mathrm{~T}$. If the radius of the loop starts shrinking at a uniform rate of $2 \mathrm{mms}^{-1}$, then the emf induced in the loop at the instant, when its radius is $20 \mathrm{~cm}$ will be

1 $0.02 \pi \mu \mathrm{V}$
2 $0.08 \pi \mu \mathrm{V}$
3 $0.03 \pi \mu \mathrm{V}$
4 $0.05 \pi \mu \mathrm{V}$
Electro Magnetic Induction

154521 The magnetic flux linked with a coil, in Weber's, is given by the equation $\phi=3 t^{2}+4 t+9$
Then, the magnitude of induced emf at $t=2 \mathrm{~s}$ will be

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $16 \mathrm{~V}$
Electro Magnetic Induction

154522 The magnetic field of an electromagnetic-wave obeys the relation in a certain region is $B=10^{-}$ ${ }^{12} \sin \left(5 \times 10^{6} t\right) \mathrm{T}$, where $t$ is the time. Then, the induced emf, in a 300 turns in coil of area 20 $\mathbf{c m}^{2}$ oriented perpendicular to the field is

1 $-2 \times 10^{-5} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
2 $-3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
3 $-2.5 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
4 $-3.3 \times 10^{-6} \cos \left(5 \times 10^{6} \mathrm{t}\right) \mathrm{V}$
Electro Magnetic Induction

154523 A $10 \Omega$ coil of 180 turns and diameter $4 \mathrm{~cm}$ is placed in a uniform magnetic field so that the magnetic flux is maximum through the coil's cross-sectional area. When the field is suddenly removed a charge of $360 \mu \mathrm{C}$ flows through a $618 \Omega$ galvanometer connected to the coil, find the magnetic field.

1 $12 \mathrm{~T}$
2 $6 \mathrm{~T}$
3 $1 \mathrm{~T}$
4 $8 \mathrm{~T}$
Electro Magnetic Induction

154524 The frequency of the charged particle circular at right angles to a uniform magnetic field does not depend upon the

1 speed of the particle
2 mass of the particle
3 charge of the particle
4 magnetic field
[SRM JEE-2018]