NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Magnetism and Matter
154368
Choose the correct statement
1 A paramagnetic material tends to move from a strong magnetic field to weak magnetic field
2 A magnetic material is in the paramagnetic phase below its Curie temperature (c) The resultant magnetic moment in an atom of a diamagnetic substance is zero
3 (d.) Typical domain size of a ferromagnetic material is $1 \mathrm{~nm}$
4 The susceptibility of a ferromagnetic material is slightly greater than 1
Explanation:
C Diamagnetic substances are those substance in which resultant magnetic moment in an atom of a diamagnetic substance is zero. - A paramagnetic material tends to move from weak to strong magnetic field. Hence, statement (a) is wrong. - A magnetic material is in the paramagnetic phase above its curie temperature. Hence statement (b) is wrong. - Typical domain size of a ferromagnetic material is 0.1 to $1 \mathrm{~mm}$. Hence option (d) is wrong. - Magnetic susceptibility of ferromagnetic substance is positive in nature and it's magnitude is greater than 1 .
Kerala CEE - 2010
Magnetism and Matter
154370
At a temperature of $30^{\circ} \mathrm{C}$, the susceptibility of a ferromagnetic material is found to be $\chi$. Its susceptibility at $333^{\circ} \mathrm{C}$ is:
1 $\chi$
2 $0.5 \chi$
3 $2 \chi$
4 $11.1 \chi$
5 $0.09 \chi$
Explanation:
B Given that, $\mathrm{T}_{1}=30^{\circ} \mathrm{C}=303 \mathrm{~K}$ $\mathrm{~T}_{2}=333^{\circ} \mathrm{C}=606 \mathrm{~K}$ According to Curie's law, $\chi_{\mathrm{m}_{1}}=\chi_{\mathrm{m}}=\frac{\mathrm{C}}{\mathrm{T}}$ $\chi_{\mathrm{m}} \cdot \mathrm{T}=$ Constant $(\mathrm{C})$ Where, $\mathrm{C}$ is curie constant $\chi_{\mathrm{m}_{1}} \cdot \mathrm{T}_{1}=\chi_{\mathrm{m}_{2}} \cdot \mathrm{T}_{2}$ $\frac{\chi_{\mathrm{m}_{1}}}{\chi_{\mathrm{m}_{2}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{606}{303}=\frac{2}{1}$ $\chi_{\mathrm{m}_{2}}=\frac{\chi_{\mathrm{m}_{1}}}{2}=0.5 \chi_{\mathrm{m}_{1}}=0.5 \chi$
AIIMS-2015
Magnetism and Matter
154371
The susceptibility and permeability of a perfectly diamagnetic substance is
1 1 and 0
2 0 and 1
3 -1 and 0
4 -1 and 1
Explanation:
C We have, For a perfectly diamagnetic substance, $\mathrm{B} =\mu_{0}(\mathrm{H}+\mathrm{I})=0$ $\mathrm{I} =-\mathrm{H}$ Susceptibility $\left(\chi_{\mathrm{m}}\right)=\frac{\mathrm{I}}{\mathrm{H}}=\frac{-\mathrm{H}}{\mathrm{H}}=-1$ And permeability $\left(\mu_{\mathrm{r}}\right)=1+\chi_{\mathrm{m}}$ $=1-1=0$ $\therefore \quad \mu=\mu_{0} \mu_{\mathrm{r}}$ $=\mu_{0} \times 0=0$
JCECE-2013
Magnetism and Matter
154373
The magnetic susceptibility of a paramagnetic material is $1.0 \times 10^{-5}$ at $27^{0} \mathrm{C}$ Temperature. Then, at what temperature its magnetic susceptibility would be $1.5 \times 10^{-5}$ ?
1 $18^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $-73^{0} \mathrm{C}$
4 $18^{0} \mathrm{C}$
Explanation:
C Given, Primary magnetic susceptibility, $\chi_{\mathrm{m}_{1}}=1.0 \times 10^{-5}$ Secondary magnetic susceptibility, $\chi_{\mathrm{m}_{2}}=1.5 \times 10^{-5}$ Primary temperature, $\mathrm{T}_{1}=27^{\circ} \mathrm{C}=27+273=300 \mathrm{~K}$ $\mathrm{T}_{2}=$ ? We know that, $\chi \propto \frac{1}{\mathrm{~T}}$ $\frac{\chi_{\mathrm{m}_{1}}}{\chi_{\mathrm{m}_{2}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ $\frac{1.0 \times 10^{-5}}{1.5 \times 10^{-5}}=\frac{\mathrm{T}_{2}}{300}$ $\mathrm{~T}_{2}=\frac{300}{1.5}$ $\mathrm{~T}_{2}=200 \mathrm{~K}=(200-273)^{\circ} \mathrm{C}=-73^{\circ} \mathrm{C}$
1 A paramagnetic material tends to move from a strong magnetic field to weak magnetic field
2 A magnetic material is in the paramagnetic phase below its Curie temperature (c) The resultant magnetic moment in an atom of a diamagnetic substance is zero
3 (d.) Typical domain size of a ferromagnetic material is $1 \mathrm{~nm}$
4 The susceptibility of a ferromagnetic material is slightly greater than 1
Explanation:
C Diamagnetic substances are those substance in which resultant magnetic moment in an atom of a diamagnetic substance is zero. - A paramagnetic material tends to move from weak to strong magnetic field. Hence, statement (a) is wrong. - A magnetic material is in the paramagnetic phase above its curie temperature. Hence statement (b) is wrong. - Typical domain size of a ferromagnetic material is 0.1 to $1 \mathrm{~mm}$. Hence option (d) is wrong. - Magnetic susceptibility of ferromagnetic substance is positive in nature and it's magnitude is greater than 1 .
Kerala CEE - 2010
Magnetism and Matter
154370
At a temperature of $30^{\circ} \mathrm{C}$, the susceptibility of a ferromagnetic material is found to be $\chi$. Its susceptibility at $333^{\circ} \mathrm{C}$ is:
1 $\chi$
2 $0.5 \chi$
3 $2 \chi$
4 $11.1 \chi$
5 $0.09 \chi$
Explanation:
B Given that, $\mathrm{T}_{1}=30^{\circ} \mathrm{C}=303 \mathrm{~K}$ $\mathrm{~T}_{2}=333^{\circ} \mathrm{C}=606 \mathrm{~K}$ According to Curie's law, $\chi_{\mathrm{m}_{1}}=\chi_{\mathrm{m}}=\frac{\mathrm{C}}{\mathrm{T}}$ $\chi_{\mathrm{m}} \cdot \mathrm{T}=$ Constant $(\mathrm{C})$ Where, $\mathrm{C}$ is curie constant $\chi_{\mathrm{m}_{1}} \cdot \mathrm{T}_{1}=\chi_{\mathrm{m}_{2}} \cdot \mathrm{T}_{2}$ $\frac{\chi_{\mathrm{m}_{1}}}{\chi_{\mathrm{m}_{2}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{606}{303}=\frac{2}{1}$ $\chi_{\mathrm{m}_{2}}=\frac{\chi_{\mathrm{m}_{1}}}{2}=0.5 \chi_{\mathrm{m}_{1}}=0.5 \chi$
AIIMS-2015
Magnetism and Matter
154371
The susceptibility and permeability of a perfectly diamagnetic substance is
1 1 and 0
2 0 and 1
3 -1 and 0
4 -1 and 1
Explanation:
C We have, For a perfectly diamagnetic substance, $\mathrm{B} =\mu_{0}(\mathrm{H}+\mathrm{I})=0$ $\mathrm{I} =-\mathrm{H}$ Susceptibility $\left(\chi_{\mathrm{m}}\right)=\frac{\mathrm{I}}{\mathrm{H}}=\frac{-\mathrm{H}}{\mathrm{H}}=-1$ And permeability $\left(\mu_{\mathrm{r}}\right)=1+\chi_{\mathrm{m}}$ $=1-1=0$ $\therefore \quad \mu=\mu_{0} \mu_{\mathrm{r}}$ $=\mu_{0} \times 0=0$
JCECE-2013
Magnetism and Matter
154373
The magnetic susceptibility of a paramagnetic material is $1.0 \times 10^{-5}$ at $27^{0} \mathrm{C}$ Temperature. Then, at what temperature its magnetic susceptibility would be $1.5 \times 10^{-5}$ ?
1 $18^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $-73^{0} \mathrm{C}$
4 $18^{0} \mathrm{C}$
Explanation:
C Given, Primary magnetic susceptibility, $\chi_{\mathrm{m}_{1}}=1.0 \times 10^{-5}$ Secondary magnetic susceptibility, $\chi_{\mathrm{m}_{2}}=1.5 \times 10^{-5}$ Primary temperature, $\mathrm{T}_{1}=27^{\circ} \mathrm{C}=27+273=300 \mathrm{~K}$ $\mathrm{T}_{2}=$ ? We know that, $\chi \propto \frac{1}{\mathrm{~T}}$ $\frac{\chi_{\mathrm{m}_{1}}}{\chi_{\mathrm{m}_{2}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ $\frac{1.0 \times 10^{-5}}{1.5 \times 10^{-5}}=\frac{\mathrm{T}_{2}}{300}$ $\mathrm{~T}_{2}=\frac{300}{1.5}$ $\mathrm{~T}_{2}=200 \mathrm{~K}=(200-273)^{\circ} \mathrm{C}=-73^{\circ} \mathrm{C}$
1 A paramagnetic material tends to move from a strong magnetic field to weak magnetic field
2 A magnetic material is in the paramagnetic phase below its Curie temperature (c) The resultant magnetic moment in an atom of a diamagnetic substance is zero
3 (d.) Typical domain size of a ferromagnetic material is $1 \mathrm{~nm}$
4 The susceptibility of a ferromagnetic material is slightly greater than 1
Explanation:
C Diamagnetic substances are those substance in which resultant magnetic moment in an atom of a diamagnetic substance is zero. - A paramagnetic material tends to move from weak to strong magnetic field. Hence, statement (a) is wrong. - A magnetic material is in the paramagnetic phase above its curie temperature. Hence statement (b) is wrong. - Typical domain size of a ferromagnetic material is 0.1 to $1 \mathrm{~mm}$. Hence option (d) is wrong. - Magnetic susceptibility of ferromagnetic substance is positive in nature and it's magnitude is greater than 1 .
Kerala CEE - 2010
Magnetism and Matter
154370
At a temperature of $30^{\circ} \mathrm{C}$, the susceptibility of a ferromagnetic material is found to be $\chi$. Its susceptibility at $333^{\circ} \mathrm{C}$ is:
1 $\chi$
2 $0.5 \chi$
3 $2 \chi$
4 $11.1 \chi$
5 $0.09 \chi$
Explanation:
B Given that, $\mathrm{T}_{1}=30^{\circ} \mathrm{C}=303 \mathrm{~K}$ $\mathrm{~T}_{2}=333^{\circ} \mathrm{C}=606 \mathrm{~K}$ According to Curie's law, $\chi_{\mathrm{m}_{1}}=\chi_{\mathrm{m}}=\frac{\mathrm{C}}{\mathrm{T}}$ $\chi_{\mathrm{m}} \cdot \mathrm{T}=$ Constant $(\mathrm{C})$ Where, $\mathrm{C}$ is curie constant $\chi_{\mathrm{m}_{1}} \cdot \mathrm{T}_{1}=\chi_{\mathrm{m}_{2}} \cdot \mathrm{T}_{2}$ $\frac{\chi_{\mathrm{m}_{1}}}{\chi_{\mathrm{m}_{2}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{606}{303}=\frac{2}{1}$ $\chi_{\mathrm{m}_{2}}=\frac{\chi_{\mathrm{m}_{1}}}{2}=0.5 \chi_{\mathrm{m}_{1}}=0.5 \chi$
AIIMS-2015
Magnetism and Matter
154371
The susceptibility and permeability of a perfectly diamagnetic substance is
1 1 and 0
2 0 and 1
3 -1 and 0
4 -1 and 1
Explanation:
C We have, For a perfectly diamagnetic substance, $\mathrm{B} =\mu_{0}(\mathrm{H}+\mathrm{I})=0$ $\mathrm{I} =-\mathrm{H}$ Susceptibility $\left(\chi_{\mathrm{m}}\right)=\frac{\mathrm{I}}{\mathrm{H}}=\frac{-\mathrm{H}}{\mathrm{H}}=-1$ And permeability $\left(\mu_{\mathrm{r}}\right)=1+\chi_{\mathrm{m}}$ $=1-1=0$ $\therefore \quad \mu=\mu_{0} \mu_{\mathrm{r}}$ $=\mu_{0} \times 0=0$
JCECE-2013
Magnetism and Matter
154373
The magnetic susceptibility of a paramagnetic material is $1.0 \times 10^{-5}$ at $27^{0} \mathrm{C}$ Temperature. Then, at what temperature its magnetic susceptibility would be $1.5 \times 10^{-5}$ ?
1 $18^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $-73^{0} \mathrm{C}$
4 $18^{0} \mathrm{C}$
Explanation:
C Given, Primary magnetic susceptibility, $\chi_{\mathrm{m}_{1}}=1.0 \times 10^{-5}$ Secondary magnetic susceptibility, $\chi_{\mathrm{m}_{2}}=1.5 \times 10^{-5}$ Primary temperature, $\mathrm{T}_{1}=27^{\circ} \mathrm{C}=27+273=300 \mathrm{~K}$ $\mathrm{T}_{2}=$ ? We know that, $\chi \propto \frac{1}{\mathrm{~T}}$ $\frac{\chi_{\mathrm{m}_{1}}}{\chi_{\mathrm{m}_{2}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ $\frac{1.0 \times 10^{-5}}{1.5 \times 10^{-5}}=\frac{\mathrm{T}_{2}}{300}$ $\mathrm{~T}_{2}=\frac{300}{1.5}$ $\mathrm{~T}_{2}=200 \mathrm{~K}=(200-273)^{\circ} \mathrm{C}=-73^{\circ} \mathrm{C}$
1 A paramagnetic material tends to move from a strong magnetic field to weak magnetic field
2 A magnetic material is in the paramagnetic phase below its Curie temperature (c) The resultant magnetic moment in an atom of a diamagnetic substance is zero
3 (d.) Typical domain size of a ferromagnetic material is $1 \mathrm{~nm}$
4 The susceptibility of a ferromagnetic material is slightly greater than 1
Explanation:
C Diamagnetic substances are those substance in which resultant magnetic moment in an atom of a diamagnetic substance is zero. - A paramagnetic material tends to move from weak to strong magnetic field. Hence, statement (a) is wrong. - A magnetic material is in the paramagnetic phase above its curie temperature. Hence statement (b) is wrong. - Typical domain size of a ferromagnetic material is 0.1 to $1 \mathrm{~mm}$. Hence option (d) is wrong. - Magnetic susceptibility of ferromagnetic substance is positive in nature and it's magnitude is greater than 1 .
Kerala CEE - 2010
Magnetism and Matter
154370
At a temperature of $30^{\circ} \mathrm{C}$, the susceptibility of a ferromagnetic material is found to be $\chi$. Its susceptibility at $333^{\circ} \mathrm{C}$ is:
1 $\chi$
2 $0.5 \chi$
3 $2 \chi$
4 $11.1 \chi$
5 $0.09 \chi$
Explanation:
B Given that, $\mathrm{T}_{1}=30^{\circ} \mathrm{C}=303 \mathrm{~K}$ $\mathrm{~T}_{2}=333^{\circ} \mathrm{C}=606 \mathrm{~K}$ According to Curie's law, $\chi_{\mathrm{m}_{1}}=\chi_{\mathrm{m}}=\frac{\mathrm{C}}{\mathrm{T}}$ $\chi_{\mathrm{m}} \cdot \mathrm{T}=$ Constant $(\mathrm{C})$ Where, $\mathrm{C}$ is curie constant $\chi_{\mathrm{m}_{1}} \cdot \mathrm{T}_{1}=\chi_{\mathrm{m}_{2}} \cdot \mathrm{T}_{2}$ $\frac{\chi_{\mathrm{m}_{1}}}{\chi_{\mathrm{m}_{2}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{606}{303}=\frac{2}{1}$ $\chi_{\mathrm{m}_{2}}=\frac{\chi_{\mathrm{m}_{1}}}{2}=0.5 \chi_{\mathrm{m}_{1}}=0.5 \chi$
AIIMS-2015
Magnetism and Matter
154371
The susceptibility and permeability of a perfectly diamagnetic substance is
1 1 and 0
2 0 and 1
3 -1 and 0
4 -1 and 1
Explanation:
C We have, For a perfectly diamagnetic substance, $\mathrm{B} =\mu_{0}(\mathrm{H}+\mathrm{I})=0$ $\mathrm{I} =-\mathrm{H}$ Susceptibility $\left(\chi_{\mathrm{m}}\right)=\frac{\mathrm{I}}{\mathrm{H}}=\frac{-\mathrm{H}}{\mathrm{H}}=-1$ And permeability $\left(\mu_{\mathrm{r}}\right)=1+\chi_{\mathrm{m}}$ $=1-1=0$ $\therefore \quad \mu=\mu_{0} \mu_{\mathrm{r}}$ $=\mu_{0} \times 0=0$
JCECE-2013
Magnetism and Matter
154373
The magnetic susceptibility of a paramagnetic material is $1.0 \times 10^{-5}$ at $27^{0} \mathrm{C}$ Temperature. Then, at what temperature its magnetic susceptibility would be $1.5 \times 10^{-5}$ ?
1 $18^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $-73^{0} \mathrm{C}$
4 $18^{0} \mathrm{C}$
Explanation:
C Given, Primary magnetic susceptibility, $\chi_{\mathrm{m}_{1}}=1.0 \times 10^{-5}$ Secondary magnetic susceptibility, $\chi_{\mathrm{m}_{2}}=1.5 \times 10^{-5}$ Primary temperature, $\mathrm{T}_{1}=27^{\circ} \mathrm{C}=27+273=300 \mathrm{~K}$ $\mathrm{T}_{2}=$ ? We know that, $\chi \propto \frac{1}{\mathrm{~T}}$ $\frac{\chi_{\mathrm{m}_{1}}}{\chi_{\mathrm{m}_{2}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ $\frac{1.0 \times 10^{-5}}{1.5 \times 10^{-5}}=\frac{\mathrm{T}_{2}}{300}$ $\mathrm{~T}_{2}=\frac{300}{1.5}$ $\mathrm{~T}_{2}=200 \mathrm{~K}=(200-273)^{\circ} \mathrm{C}=-73^{\circ} \mathrm{C}$