03. Magnetism, Magnetic Properties and Magnetisation
Magnetism and Matter

154277 The strength of earth's magnetic field at a point is $0.4 \times 10^{-5} \mathrm{~T}$. If this field is to be annulled by the magnetic induction produced at the centre of a circular conducting loop of radius $\pi$ $\mathrm{cm}$, the current to be sent through the loop is

1 $2 \mathrm{~A}$
2 $0.15 \mathrm{~A}$
3 $1.5 \mathrm{~A}$
4 $0.2 \mathrm{~A}$
5 $1 \mathrm{~A}$
Magnetism and Matter

154276 B-H curve of two different material $P$ and $Q$ are shown in fig. These materials are used to make magnets for electric generator, transformer and electromagnetic core. Then it is proper to use-
original image

1 $\mathrm{P}$ for electric generators and transformers
2 P for electromagnets and $\mathrm{Q}$ for electric generators
3 $\mathrm{P}$ for transformers and $\mathrm{Q}$ for electric generators or electromagnets
4 Q for electromagnets and transformers
Magnetism and Matter

154280 A paramagnetic sample shows a net magnetization of $0.8 \mathrm{~A} / \mathrm{m}$, when placed in an external magnetic field of strength $0.8 \mathrm{~T}$ at a temperature $5 \mathrm{~K}$. When the same sample is placed in an external magnetic field of $0.4 \mathrm{~T}$ at a temperature of $20 \mathrm{~K}$, the magnetization is

1 $0.1 \mathrm{Am}^{-1}$
2 $0.8 \mathrm{Am}^{-1}$
3 $0.8 \mathrm{Am}^{-2}$
4 $0.1 \mathrm{Am}$
Magnetism and Matter

154281 An electron having kinetic energy ' $T$ ' is moving in a circular orbit. If radius ' $R$ ' perpendicular to the uniform magnetic field induction $\vec{B}$. If kinetic energy is doubled and magnetic field induction is tripled, the radius will become

1 $\mathrm{R} \sqrt{\frac{9}{4}}$
2 $\mathrm{R} \sqrt{\frac{3}{2}}$
3 $\mathrm{R} \sqrt{\frac{2}{9}}$
4 $\mathrm{R} \sqrt{\frac{4}{3}}$
Magnetism and Matter

154284 A small cube of side of $1 \mathrm{~mm}^{3}$ is placed at the centre of a circular loop of radius $20 \mathrm{~cm}$. If the current in the loop is $2 \mathrm{~A}$ then the magnetic energy stored inside the cube is
(Assume $\mu_{0}=4 \pi \times 10^{-7} \mathrm{TM} / \mathrm{A}$ )

1 $1.57 \times 10^{-18} \mathrm{~J}$
2 $2.57 \times 10^{-14} \mathrm{~J}$
3 $1.57 \times 10^{-14} \mathrm{~J}$
4 $4.57 \times 10^{-13} \mathrm{~J}$
Magnetism and Matter

154277 The strength of earth's magnetic field at a point is $0.4 \times 10^{-5} \mathrm{~T}$. If this field is to be annulled by the magnetic induction produced at the centre of a circular conducting loop of radius $\pi$ $\mathrm{cm}$, the current to be sent through the loop is

1 $2 \mathrm{~A}$
2 $0.15 \mathrm{~A}$
3 $1.5 \mathrm{~A}$
4 $0.2 \mathrm{~A}$
5 $1 \mathrm{~A}$
Magnetism and Matter

154276 B-H curve of two different material $P$ and $Q$ are shown in fig. These materials are used to make magnets for electric generator, transformer and electromagnetic core. Then it is proper to use-
original image

1 $\mathrm{P}$ for electric generators and transformers
2 P for electromagnets and $\mathrm{Q}$ for electric generators
3 $\mathrm{P}$ for transformers and $\mathrm{Q}$ for electric generators or electromagnets
4 Q for electromagnets and transformers
Magnetism and Matter

154280 A paramagnetic sample shows a net magnetization of $0.8 \mathrm{~A} / \mathrm{m}$, when placed in an external magnetic field of strength $0.8 \mathrm{~T}$ at a temperature $5 \mathrm{~K}$. When the same sample is placed in an external magnetic field of $0.4 \mathrm{~T}$ at a temperature of $20 \mathrm{~K}$, the magnetization is

1 $0.1 \mathrm{Am}^{-1}$
2 $0.8 \mathrm{Am}^{-1}$
3 $0.8 \mathrm{Am}^{-2}$
4 $0.1 \mathrm{Am}$
Magnetism and Matter

154281 An electron having kinetic energy ' $T$ ' is moving in a circular orbit. If radius ' $R$ ' perpendicular to the uniform magnetic field induction $\vec{B}$. If kinetic energy is doubled and magnetic field induction is tripled, the radius will become

1 $\mathrm{R} \sqrt{\frac{9}{4}}$
2 $\mathrm{R} \sqrt{\frac{3}{2}}$
3 $\mathrm{R} \sqrt{\frac{2}{9}}$
4 $\mathrm{R} \sqrt{\frac{4}{3}}$
Magnetism and Matter

154284 A small cube of side of $1 \mathrm{~mm}^{3}$ is placed at the centre of a circular loop of radius $20 \mathrm{~cm}$. If the current in the loop is $2 \mathrm{~A}$ then the magnetic energy stored inside the cube is
(Assume $\mu_{0}=4 \pi \times 10^{-7} \mathrm{TM} / \mathrm{A}$ )

1 $1.57 \times 10^{-18} \mathrm{~J}$
2 $2.57 \times 10^{-14} \mathrm{~J}$
3 $1.57 \times 10^{-14} \mathrm{~J}$
4 $4.57 \times 10^{-13} \mathrm{~J}$
Magnetism and Matter

154277 The strength of earth's magnetic field at a point is $0.4 \times 10^{-5} \mathrm{~T}$. If this field is to be annulled by the magnetic induction produced at the centre of a circular conducting loop of radius $\pi$ $\mathrm{cm}$, the current to be sent through the loop is

1 $2 \mathrm{~A}$
2 $0.15 \mathrm{~A}$
3 $1.5 \mathrm{~A}$
4 $0.2 \mathrm{~A}$
5 $1 \mathrm{~A}$
Magnetism and Matter

154276 B-H curve of two different material $P$ and $Q$ are shown in fig. These materials are used to make magnets for electric generator, transformer and electromagnetic core. Then it is proper to use-
original image

1 $\mathrm{P}$ for electric generators and transformers
2 P for electromagnets and $\mathrm{Q}$ for electric generators
3 $\mathrm{P}$ for transformers and $\mathrm{Q}$ for electric generators or electromagnets
4 Q for electromagnets and transformers
Magnetism and Matter

154280 A paramagnetic sample shows a net magnetization of $0.8 \mathrm{~A} / \mathrm{m}$, when placed in an external magnetic field of strength $0.8 \mathrm{~T}$ at a temperature $5 \mathrm{~K}$. When the same sample is placed in an external magnetic field of $0.4 \mathrm{~T}$ at a temperature of $20 \mathrm{~K}$, the magnetization is

1 $0.1 \mathrm{Am}^{-1}$
2 $0.8 \mathrm{Am}^{-1}$
3 $0.8 \mathrm{Am}^{-2}$
4 $0.1 \mathrm{Am}$
Magnetism and Matter

154281 An electron having kinetic energy ' $T$ ' is moving in a circular orbit. If radius ' $R$ ' perpendicular to the uniform magnetic field induction $\vec{B}$. If kinetic energy is doubled and magnetic field induction is tripled, the radius will become

1 $\mathrm{R} \sqrt{\frac{9}{4}}$
2 $\mathrm{R} \sqrt{\frac{3}{2}}$
3 $\mathrm{R} \sqrt{\frac{2}{9}}$
4 $\mathrm{R} \sqrt{\frac{4}{3}}$
Magnetism and Matter

154284 A small cube of side of $1 \mathrm{~mm}^{3}$ is placed at the centre of a circular loop of radius $20 \mathrm{~cm}$. If the current in the loop is $2 \mathrm{~A}$ then the magnetic energy stored inside the cube is
(Assume $\mu_{0}=4 \pi \times 10^{-7} \mathrm{TM} / \mathrm{A}$ )

1 $1.57 \times 10^{-18} \mathrm{~J}$
2 $2.57 \times 10^{-14} \mathrm{~J}$
3 $1.57 \times 10^{-14} \mathrm{~J}$
4 $4.57 \times 10^{-13} \mathrm{~J}$
Magnetism and Matter

154277 The strength of earth's magnetic field at a point is $0.4 \times 10^{-5} \mathrm{~T}$. If this field is to be annulled by the magnetic induction produced at the centre of a circular conducting loop of radius $\pi$ $\mathrm{cm}$, the current to be sent through the loop is

1 $2 \mathrm{~A}$
2 $0.15 \mathrm{~A}$
3 $1.5 \mathrm{~A}$
4 $0.2 \mathrm{~A}$
5 $1 \mathrm{~A}$
Magnetism and Matter

154276 B-H curve of two different material $P$ and $Q$ are shown in fig. These materials are used to make magnets for electric generator, transformer and electromagnetic core. Then it is proper to use-
original image

1 $\mathrm{P}$ for electric generators and transformers
2 P for electromagnets and $\mathrm{Q}$ for electric generators
3 $\mathrm{P}$ for transformers and $\mathrm{Q}$ for electric generators or electromagnets
4 Q for electromagnets and transformers
Magnetism and Matter

154280 A paramagnetic sample shows a net magnetization of $0.8 \mathrm{~A} / \mathrm{m}$, when placed in an external magnetic field of strength $0.8 \mathrm{~T}$ at a temperature $5 \mathrm{~K}$. When the same sample is placed in an external magnetic field of $0.4 \mathrm{~T}$ at a temperature of $20 \mathrm{~K}$, the magnetization is

1 $0.1 \mathrm{Am}^{-1}$
2 $0.8 \mathrm{Am}^{-1}$
3 $0.8 \mathrm{Am}^{-2}$
4 $0.1 \mathrm{Am}$
Magnetism and Matter

154281 An electron having kinetic energy ' $T$ ' is moving in a circular orbit. If radius ' $R$ ' perpendicular to the uniform magnetic field induction $\vec{B}$. If kinetic energy is doubled and magnetic field induction is tripled, the radius will become

1 $\mathrm{R} \sqrt{\frac{9}{4}}$
2 $\mathrm{R} \sqrt{\frac{3}{2}}$
3 $\mathrm{R} \sqrt{\frac{2}{9}}$
4 $\mathrm{R} \sqrt{\frac{4}{3}}$
Magnetism and Matter

154284 A small cube of side of $1 \mathrm{~mm}^{3}$ is placed at the centre of a circular loop of radius $20 \mathrm{~cm}$. If the current in the loop is $2 \mathrm{~A}$ then the magnetic energy stored inside the cube is
(Assume $\mu_{0}=4 \pi \times 10^{-7} \mathrm{TM} / \mathrm{A}$ )

1 $1.57 \times 10^{-18} \mathrm{~J}$
2 $2.57 \times 10^{-14} \mathrm{~J}$
3 $1.57 \times 10^{-14} \mathrm{~J}$
4 $4.57 \times 10^{-13} \mathrm{~J}$
Magnetism and Matter

154277 The strength of earth's magnetic field at a point is $0.4 \times 10^{-5} \mathrm{~T}$. If this field is to be annulled by the magnetic induction produced at the centre of a circular conducting loop of radius $\pi$ $\mathrm{cm}$, the current to be sent through the loop is

1 $2 \mathrm{~A}$
2 $0.15 \mathrm{~A}$
3 $1.5 \mathrm{~A}$
4 $0.2 \mathrm{~A}$
5 $1 \mathrm{~A}$
Magnetism and Matter

154276 B-H curve of two different material $P$ and $Q$ are shown in fig. These materials are used to make magnets for electric generator, transformer and electromagnetic core. Then it is proper to use-
original image

1 $\mathrm{P}$ for electric generators and transformers
2 P for electromagnets and $\mathrm{Q}$ for electric generators
3 $\mathrm{P}$ for transformers and $\mathrm{Q}$ for electric generators or electromagnets
4 Q for electromagnets and transformers
Magnetism and Matter

154280 A paramagnetic sample shows a net magnetization of $0.8 \mathrm{~A} / \mathrm{m}$, when placed in an external magnetic field of strength $0.8 \mathrm{~T}$ at a temperature $5 \mathrm{~K}$. When the same sample is placed in an external magnetic field of $0.4 \mathrm{~T}$ at a temperature of $20 \mathrm{~K}$, the magnetization is

1 $0.1 \mathrm{Am}^{-1}$
2 $0.8 \mathrm{Am}^{-1}$
3 $0.8 \mathrm{Am}^{-2}$
4 $0.1 \mathrm{Am}$
Magnetism and Matter

154281 An electron having kinetic energy ' $T$ ' is moving in a circular orbit. If radius ' $R$ ' perpendicular to the uniform magnetic field induction $\vec{B}$. If kinetic energy is doubled and magnetic field induction is tripled, the radius will become

1 $\mathrm{R} \sqrt{\frac{9}{4}}$
2 $\mathrm{R} \sqrt{\frac{3}{2}}$
3 $\mathrm{R} \sqrt{\frac{2}{9}}$
4 $\mathrm{R} \sqrt{\frac{4}{3}}$
Magnetism and Matter

154284 A small cube of side of $1 \mathrm{~mm}^{3}$ is placed at the centre of a circular loop of radius $20 \mathrm{~cm}$. If the current in the loop is $2 \mathrm{~A}$ then the magnetic energy stored inside the cube is
(Assume $\mu_{0}=4 \pi \times 10^{-7} \mathrm{TM} / \mathrm{A}$ )

1 $1.57 \times 10^{-18} \mathrm{~J}$
2 $2.57 \times 10^{-14} \mathrm{~J}$
3 $1.57 \times 10^{-14} \mathrm{~J}$
4 $4.57 \times 10^{-13} \mathrm{~J}$