01. Earth Magnetism
Magnetism and Matter

154134 The earth's magnetic field at the geometric poles is $\sqrt{10} \times 10^{-5} \mathrm{~T}$. The magnitude of the field at a point on the earth's surface where the radius makes an angle $\theta$ with the axis of earth's assumed magnetic dipole is $5 \times 10^{-5} \mathrm{~T}$. The magnitude of $\theta$ in degree is :

1 $30^{\circ}$
2 $60^{\circ}$
3 $45^{\circ}$
4 $75^{\circ}$
Magnetism and Matter

154137 A jet plane having a wing-span of $25 \mathrm{~m}$ is travelling horizontally towards East with a speed of $3600 \mathrm{~km} / \mathrm{hr}$. If the Earth's magnetic field at the location is $4 \times 10^{-4} \mathrm{~T}$ and the angle of dip is $30^{\circ}$, then the potential difference between the ends of the wing is :

1 $4 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2 \mathrm{~V}$
4 $2.5 \mathrm{~V}$
Magnetism and Matter

154138 The horizontal component of the earth's magnetic field is $3.6 \times 10^{-5}$ tesla where the dip angle is $60^{\circ}$. The magnitude of the earth's magnetic field is

1 $2.8 \times 10^{-4}$ Tesla
2 $2.1 \times 10^{-4}$ Tesla
3 $7.2 \times 10^{-5}$ Tesla
4 $3.6 \times 10^{-5}$ Tesla
Magnetism and Matter

154140 The earth's magnetic field lines resemble that of a dipole at the centre of the earth. If the magnetic moment of this dipole is close to $8 \times 10^{22} \mathrm{Am}^{2}$, the value of earth's magnetic field near the equator is closed to (radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$ )

1 0.6 gauss
2 1.2 gauss
3 1.8 gauss
4 0.32gauss
Magnetism and Matter

154142 The relation between $B_{h}, B_{v}$ and $B$ is

1 $\mathrm{B}=\sqrt{\mathrm{B}_{\mathrm{h}}^{2}+\mathrm{B}_{\mathrm{v}}^{2}}$
2 $\mathrm{B}=\mathrm{B}_{\mathrm{h}} \cdot \mathrm{B}_{\mathrm{v}}$
3 $B=\frac{B_{v}}{B_{h}}$
4 $\mathrm{B}=\frac{\mathrm{B}_{\mathrm{h}}}{\mathrm{B}_{\mathrm{v}}}$
Magnetism and Matter

154134 The earth's magnetic field at the geometric poles is $\sqrt{10} \times 10^{-5} \mathrm{~T}$. The magnitude of the field at a point on the earth's surface where the radius makes an angle $\theta$ with the axis of earth's assumed magnetic dipole is $5 \times 10^{-5} \mathrm{~T}$. The magnitude of $\theta$ in degree is :

1 $30^{\circ}$
2 $60^{\circ}$
3 $45^{\circ}$
4 $75^{\circ}$
Magnetism and Matter

154137 A jet plane having a wing-span of $25 \mathrm{~m}$ is travelling horizontally towards East with a speed of $3600 \mathrm{~km} / \mathrm{hr}$. If the Earth's magnetic field at the location is $4 \times 10^{-4} \mathrm{~T}$ and the angle of dip is $30^{\circ}$, then the potential difference between the ends of the wing is :

1 $4 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2 \mathrm{~V}$
4 $2.5 \mathrm{~V}$
Magnetism and Matter

154138 The horizontal component of the earth's magnetic field is $3.6 \times 10^{-5}$ tesla where the dip angle is $60^{\circ}$. The magnitude of the earth's magnetic field is

1 $2.8 \times 10^{-4}$ Tesla
2 $2.1 \times 10^{-4}$ Tesla
3 $7.2 \times 10^{-5}$ Tesla
4 $3.6 \times 10^{-5}$ Tesla
Magnetism and Matter

154140 The earth's magnetic field lines resemble that of a dipole at the centre of the earth. If the magnetic moment of this dipole is close to $8 \times 10^{22} \mathrm{Am}^{2}$, the value of earth's magnetic field near the equator is closed to (radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$ )

1 0.6 gauss
2 1.2 gauss
3 1.8 gauss
4 0.32gauss
Magnetism and Matter

154142 The relation between $B_{h}, B_{v}$ and $B$ is

1 $\mathrm{B}=\sqrt{\mathrm{B}_{\mathrm{h}}^{2}+\mathrm{B}_{\mathrm{v}}^{2}}$
2 $\mathrm{B}=\mathrm{B}_{\mathrm{h}} \cdot \mathrm{B}_{\mathrm{v}}$
3 $B=\frac{B_{v}}{B_{h}}$
4 $\mathrm{B}=\frac{\mathrm{B}_{\mathrm{h}}}{\mathrm{B}_{\mathrm{v}}}$
Magnetism and Matter

154134 The earth's magnetic field at the geometric poles is $\sqrt{10} \times 10^{-5} \mathrm{~T}$. The magnitude of the field at a point on the earth's surface where the radius makes an angle $\theta$ with the axis of earth's assumed magnetic dipole is $5 \times 10^{-5} \mathrm{~T}$. The magnitude of $\theta$ in degree is :

1 $30^{\circ}$
2 $60^{\circ}$
3 $45^{\circ}$
4 $75^{\circ}$
Magnetism and Matter

154137 A jet plane having a wing-span of $25 \mathrm{~m}$ is travelling horizontally towards East with a speed of $3600 \mathrm{~km} / \mathrm{hr}$. If the Earth's magnetic field at the location is $4 \times 10^{-4} \mathrm{~T}$ and the angle of dip is $30^{\circ}$, then the potential difference between the ends of the wing is :

1 $4 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2 \mathrm{~V}$
4 $2.5 \mathrm{~V}$
Magnetism and Matter

154138 The horizontal component of the earth's magnetic field is $3.6 \times 10^{-5}$ tesla where the dip angle is $60^{\circ}$. The magnitude of the earth's magnetic field is

1 $2.8 \times 10^{-4}$ Tesla
2 $2.1 \times 10^{-4}$ Tesla
3 $7.2 \times 10^{-5}$ Tesla
4 $3.6 \times 10^{-5}$ Tesla
Magnetism and Matter

154140 The earth's magnetic field lines resemble that of a dipole at the centre of the earth. If the magnetic moment of this dipole is close to $8 \times 10^{22} \mathrm{Am}^{2}$, the value of earth's magnetic field near the equator is closed to (radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$ )

1 0.6 gauss
2 1.2 gauss
3 1.8 gauss
4 0.32gauss
Magnetism and Matter

154142 The relation between $B_{h}, B_{v}$ and $B$ is

1 $\mathrm{B}=\sqrt{\mathrm{B}_{\mathrm{h}}^{2}+\mathrm{B}_{\mathrm{v}}^{2}}$
2 $\mathrm{B}=\mathrm{B}_{\mathrm{h}} \cdot \mathrm{B}_{\mathrm{v}}$
3 $B=\frac{B_{v}}{B_{h}}$
4 $\mathrm{B}=\frac{\mathrm{B}_{\mathrm{h}}}{\mathrm{B}_{\mathrm{v}}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Magnetism and Matter

154134 The earth's magnetic field at the geometric poles is $\sqrt{10} \times 10^{-5} \mathrm{~T}$. The magnitude of the field at a point on the earth's surface where the radius makes an angle $\theta$ with the axis of earth's assumed magnetic dipole is $5 \times 10^{-5} \mathrm{~T}$. The magnitude of $\theta$ in degree is :

1 $30^{\circ}$
2 $60^{\circ}$
3 $45^{\circ}$
4 $75^{\circ}$
Magnetism and Matter

154137 A jet plane having a wing-span of $25 \mathrm{~m}$ is travelling horizontally towards East with a speed of $3600 \mathrm{~km} / \mathrm{hr}$. If the Earth's magnetic field at the location is $4 \times 10^{-4} \mathrm{~T}$ and the angle of dip is $30^{\circ}$, then the potential difference between the ends of the wing is :

1 $4 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2 \mathrm{~V}$
4 $2.5 \mathrm{~V}$
Magnetism and Matter

154138 The horizontal component of the earth's magnetic field is $3.6 \times 10^{-5}$ tesla where the dip angle is $60^{\circ}$. The magnitude of the earth's magnetic field is

1 $2.8 \times 10^{-4}$ Tesla
2 $2.1 \times 10^{-4}$ Tesla
3 $7.2 \times 10^{-5}$ Tesla
4 $3.6 \times 10^{-5}$ Tesla
Magnetism and Matter

154140 The earth's magnetic field lines resemble that of a dipole at the centre of the earth. If the magnetic moment of this dipole is close to $8 \times 10^{22} \mathrm{Am}^{2}$, the value of earth's magnetic field near the equator is closed to (radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$ )

1 0.6 gauss
2 1.2 gauss
3 1.8 gauss
4 0.32gauss
Magnetism and Matter

154142 The relation between $B_{h}, B_{v}$ and $B$ is

1 $\mathrm{B}=\sqrt{\mathrm{B}_{\mathrm{h}}^{2}+\mathrm{B}_{\mathrm{v}}^{2}}$
2 $\mathrm{B}=\mathrm{B}_{\mathrm{h}} \cdot \mathrm{B}_{\mathrm{v}}$
3 $B=\frac{B_{v}}{B_{h}}$
4 $\mathrm{B}=\frac{\mathrm{B}_{\mathrm{h}}}{\mathrm{B}_{\mathrm{v}}}$
Magnetism and Matter

154134 The earth's magnetic field at the geometric poles is $\sqrt{10} \times 10^{-5} \mathrm{~T}$. The magnitude of the field at a point on the earth's surface where the radius makes an angle $\theta$ with the axis of earth's assumed magnetic dipole is $5 \times 10^{-5} \mathrm{~T}$. The magnitude of $\theta$ in degree is :

1 $30^{\circ}$
2 $60^{\circ}$
3 $45^{\circ}$
4 $75^{\circ}$
Magnetism and Matter

154137 A jet plane having a wing-span of $25 \mathrm{~m}$ is travelling horizontally towards East with a speed of $3600 \mathrm{~km} / \mathrm{hr}$. If the Earth's magnetic field at the location is $4 \times 10^{-4} \mathrm{~T}$ and the angle of dip is $30^{\circ}$, then the potential difference between the ends of the wing is :

1 $4 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2 \mathrm{~V}$
4 $2.5 \mathrm{~V}$
Magnetism and Matter

154138 The horizontal component of the earth's magnetic field is $3.6 \times 10^{-5}$ tesla where the dip angle is $60^{\circ}$. The magnitude of the earth's magnetic field is

1 $2.8 \times 10^{-4}$ Tesla
2 $2.1 \times 10^{-4}$ Tesla
3 $7.2 \times 10^{-5}$ Tesla
4 $3.6 \times 10^{-5}$ Tesla
Magnetism and Matter

154140 The earth's magnetic field lines resemble that of a dipole at the centre of the earth. If the magnetic moment of this dipole is close to $8 \times 10^{22} \mathrm{Am}^{2}$, the value of earth's magnetic field near the equator is closed to (radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$ )

1 0.6 gauss
2 1.2 gauss
3 1.8 gauss
4 0.32gauss
Magnetism and Matter

154142 The relation between $B_{h}, B_{v}$ and $B$ is

1 $\mathrm{B}=\sqrt{\mathrm{B}_{\mathrm{h}}^{2}+\mathrm{B}_{\mathrm{v}}^{2}}$
2 $\mathrm{B}=\mathrm{B}_{\mathrm{h}} \cdot \mathrm{B}_{\mathrm{v}}$
3 $B=\frac{B_{v}}{B_{h}}$
4 $\mathrm{B}=\frac{\mathrm{B}_{\mathrm{h}}}{\mathrm{B}_{\mathrm{v}}}$