154122 A torque of $1.732 \times 10^{-5} \mathrm{Nm}$ is required to hold a magnet at $90^{\circ}$ with the horizontal component of earth's magnetic field. The torque required to hold it at $60^{\circ}$ will be $\left[\sin \frac{\pi}{2}=1, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$ $[\sqrt{\mathbf{3}}=\mathbf{1 . 7 3 2}]$
154122 A torque of $1.732 \times 10^{-5} \mathrm{Nm}$ is required to hold a magnet at $90^{\circ}$ with the horizontal component of earth's magnetic field. The torque required to hold it at $60^{\circ}$ will be $\left[\sin \frac{\pi}{2}=1, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$ $[\sqrt{\mathbf{3}}=\mathbf{1 . 7 3 2}]$
154122 A torque of $1.732 \times 10^{-5} \mathrm{Nm}$ is required to hold a magnet at $90^{\circ}$ with the horizontal component of earth's magnetic field. The torque required to hold it at $60^{\circ}$ will be $\left[\sin \frac{\pi}{2}=1, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$ $[\sqrt{\mathbf{3}}=\mathbf{1 . 7 3 2}]$
154122 A torque of $1.732 \times 10^{-5} \mathrm{Nm}$ is required to hold a magnet at $90^{\circ}$ with the horizontal component of earth's magnetic field. The torque required to hold it at $60^{\circ}$ will be $\left[\sin \frac{\pi}{2}=1, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$ $[\sqrt{\mathbf{3}}=\mathbf{1 . 7 3 2}]$