01. Earth Magnetism
Magnetism and Matter

154122 A torque of $1.732 \times 10^{-5} \mathrm{Nm}$ is required to hold a magnet at $90^{\circ}$ with the horizontal component of earth's magnetic field. The torque required to hold it at $60^{\circ}$ will be $\left[\sin \frac{\pi}{2}=1, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$ $[\sqrt{\mathbf{3}}=\mathbf{1 . 7 3 2}]$

1 $0.5 \times 10^{-5} \mathrm{Nm}$
2 $1 \times 10^{-5} \mathrm{Nm}$
3 $1.5 \times 10^{-5} \mathrm{Nm}$
4 $1.732 \times 10^{-5} \mathrm{Nm}$
Magnetism and Matter

154123 The angle of dip at a place where horizontal and vertical components of earth's magnetic field are equal is

1 $45^{\circ}$
2 $30^{\circ}$
3 $0^{\circ}$
4 $60^{\circ}$
Magnetism and Matter

154125 If the angle of dip at two places are $30^{\circ}$ and $45^{\circ}$ respectively, then the ratio of horizontal components of earth's magnetic field at the two places will be

1 $\sqrt{3}: \sqrt{2}$
2 $1: \sqrt{2}$
3 $1: \sqrt{3}$
4 $1: 2$
Magnetism and Matter

154126 The horizontal component of earth's magnetic field at a place is $0.4 \times 10^{-4} \mathrm{~T}$. If the angle of dip is $45^{\circ}$, the value of total intensity of earth's magnetic field is

1 $0.5 \times 10^{-4} \mathrm{~T}$
2 $0.4 \times 10^{-4} \mathrm{~T}$
3 $0.5 \times 10^{-6} \mathrm{~T}$
4 $0.4 \times 10^{-6} \mathrm{~T}$
Magnetism and Matter

154122 A torque of $1.732 \times 10^{-5} \mathrm{Nm}$ is required to hold a magnet at $90^{\circ}$ with the horizontal component of earth's magnetic field. The torque required to hold it at $60^{\circ}$ will be $\left[\sin \frac{\pi}{2}=1, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$ $[\sqrt{\mathbf{3}}=\mathbf{1 . 7 3 2}]$

1 $0.5 \times 10^{-5} \mathrm{Nm}$
2 $1 \times 10^{-5} \mathrm{Nm}$
3 $1.5 \times 10^{-5} \mathrm{Nm}$
4 $1.732 \times 10^{-5} \mathrm{Nm}$
Magnetism and Matter

154123 The angle of dip at a place where horizontal and vertical components of earth's magnetic field are equal is

1 $45^{\circ}$
2 $30^{\circ}$
3 $0^{\circ}$
4 $60^{\circ}$
Magnetism and Matter

154125 If the angle of dip at two places are $30^{\circ}$ and $45^{\circ}$ respectively, then the ratio of horizontal components of earth's magnetic field at the two places will be

1 $\sqrt{3}: \sqrt{2}$
2 $1: \sqrt{2}$
3 $1: \sqrt{3}$
4 $1: 2$
Magnetism and Matter

154126 The horizontal component of earth's magnetic field at a place is $0.4 \times 10^{-4} \mathrm{~T}$. If the angle of dip is $45^{\circ}$, the value of total intensity of earth's magnetic field is

1 $0.5 \times 10^{-4} \mathrm{~T}$
2 $0.4 \times 10^{-4} \mathrm{~T}$
3 $0.5 \times 10^{-6} \mathrm{~T}$
4 $0.4 \times 10^{-6} \mathrm{~T}$
Magnetism and Matter

154122 A torque of $1.732 \times 10^{-5} \mathrm{Nm}$ is required to hold a magnet at $90^{\circ}$ with the horizontal component of earth's magnetic field. The torque required to hold it at $60^{\circ}$ will be $\left[\sin \frac{\pi}{2}=1, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$ $[\sqrt{\mathbf{3}}=\mathbf{1 . 7 3 2}]$

1 $0.5 \times 10^{-5} \mathrm{Nm}$
2 $1 \times 10^{-5} \mathrm{Nm}$
3 $1.5 \times 10^{-5} \mathrm{Nm}$
4 $1.732 \times 10^{-5} \mathrm{Nm}$
Magnetism and Matter

154123 The angle of dip at a place where horizontal and vertical components of earth's magnetic field are equal is

1 $45^{\circ}$
2 $30^{\circ}$
3 $0^{\circ}$
4 $60^{\circ}$
Magnetism and Matter

154125 If the angle of dip at two places are $30^{\circ}$ and $45^{\circ}$ respectively, then the ratio of horizontal components of earth's magnetic field at the two places will be

1 $\sqrt{3}: \sqrt{2}$
2 $1: \sqrt{2}$
3 $1: \sqrt{3}$
4 $1: 2$
Magnetism and Matter

154126 The horizontal component of earth's magnetic field at a place is $0.4 \times 10^{-4} \mathrm{~T}$. If the angle of dip is $45^{\circ}$, the value of total intensity of earth's magnetic field is

1 $0.5 \times 10^{-4} \mathrm{~T}$
2 $0.4 \times 10^{-4} \mathrm{~T}$
3 $0.5 \times 10^{-6} \mathrm{~T}$
4 $0.4 \times 10^{-6} \mathrm{~T}$
Magnetism and Matter

154122 A torque of $1.732 \times 10^{-5} \mathrm{Nm}$ is required to hold a magnet at $90^{\circ}$ with the horizontal component of earth's magnetic field. The torque required to hold it at $60^{\circ}$ will be $\left[\sin \frac{\pi}{2}=1, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right]$ $[\sqrt{\mathbf{3}}=\mathbf{1 . 7 3 2}]$

1 $0.5 \times 10^{-5} \mathrm{Nm}$
2 $1 \times 10^{-5} \mathrm{Nm}$
3 $1.5 \times 10^{-5} \mathrm{Nm}$
4 $1.732 \times 10^{-5} \mathrm{Nm}$
Magnetism and Matter

154123 The angle of dip at a place where horizontal and vertical components of earth's magnetic field are equal is

1 $45^{\circ}$
2 $30^{\circ}$
3 $0^{\circ}$
4 $60^{\circ}$
Magnetism and Matter

154125 If the angle of dip at two places are $30^{\circ}$ and $45^{\circ}$ respectively, then the ratio of horizontal components of earth's magnetic field at the two places will be

1 $\sqrt{3}: \sqrt{2}$
2 $1: \sqrt{2}$
3 $1: \sqrt{3}$
4 $1: 2$
Magnetism and Matter

154126 The horizontal component of earth's magnetic field at a place is $0.4 \times 10^{-4} \mathrm{~T}$. If the angle of dip is $45^{\circ}$, the value of total intensity of earth's magnetic field is

1 $0.5 \times 10^{-4} \mathrm{~T}$
2 $0.4 \times 10^{-4} \mathrm{~T}$
3 $0.5 \times 10^{-6} \mathrm{~T}$
4 $0.4 \times 10^{-6} \mathrm{~T}$