01. Earth Magnetism
Magnetism and Matter

154100 A magnet hung at $45^{\circ}$ with magnetic meridian makes an angle of $60^{\circ}$ with the horizontal. The actual value of the angle of dip is

1 $\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right)$
2 $\tan ^{-1}(\sqrt{6})$
3 $\tan ^{-1}\left(\sqrt{\frac{2}{3}}\right)$
4 $\tan ^{-1}\left(\sqrt{\frac{1}{2}}\right)$
Magnetism and Matter

154101 Two bar magnets oscillate in a horizontal plane in earth's magnetic field with time periods of 3 $s$ and $4 \mathrm{~s}$ respectively. If their moments of inertia are in the ratio of $3: 2$ then the ratio of their magnetic moments will be:

1 $2: 1$
2 $8: 3$
3 $1: 3$
4 $27: 16$
Magnetism and Matter

154102 A compass needle of oscillation magnetometer oscillates 20 times per minute at a place $P$ of dip $30^{\circ}$. The number of oscillations per minute become 10 at another place $Q$ of $60^{\circ}$ dip. The ratio of the total magnetic field at the two places $\left(B_{Q}: B_{P}\right)$ is :

1 $\sqrt{3}: 4$
2 $4: \sqrt{3}$
3 $\sqrt{3}: 2$
4 $2: \sqrt{3}$
Magnetism and Matter

154104 An electron with energy $0.1 \mathrm{keV}$ moves at right angle to the earth's magnetic field of $1 \times 10^{-4}$ $\mathrm{Wbm}^{-2}$. The frequency of revolution of the electron will be
(Take mass of electron $=\mathbf{9 . 0} \times \mathbf{1 0}^{-31} \mathbf{~ k g}$ )

1 $1.6 \times 10^{5} \mathrm{~Hz}$
2 $5.6 \times 10^{5} \mathrm{~Hz}$
3 $2.8 \times 10^{6} \mathrm{~Hz}$
4 $1.8 \times 10^{6} \mathrm{~Hz}$
Magnetism and Matter

154100 A magnet hung at $45^{\circ}$ with magnetic meridian makes an angle of $60^{\circ}$ with the horizontal. The actual value of the angle of dip is

1 $\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right)$
2 $\tan ^{-1}(\sqrt{6})$
3 $\tan ^{-1}\left(\sqrt{\frac{2}{3}}\right)$
4 $\tan ^{-1}\left(\sqrt{\frac{1}{2}}\right)$
Magnetism and Matter

154101 Two bar magnets oscillate in a horizontal plane in earth's magnetic field with time periods of 3 $s$ and $4 \mathrm{~s}$ respectively. If their moments of inertia are in the ratio of $3: 2$ then the ratio of their magnetic moments will be:

1 $2: 1$
2 $8: 3$
3 $1: 3$
4 $27: 16$
Magnetism and Matter

154102 A compass needle of oscillation magnetometer oscillates 20 times per minute at a place $P$ of dip $30^{\circ}$. The number of oscillations per minute become 10 at another place $Q$ of $60^{\circ}$ dip. The ratio of the total magnetic field at the two places $\left(B_{Q}: B_{P}\right)$ is :

1 $\sqrt{3}: 4$
2 $4: \sqrt{3}$
3 $\sqrt{3}: 2$
4 $2: \sqrt{3}$
Magnetism and Matter

154104 An electron with energy $0.1 \mathrm{keV}$ moves at right angle to the earth's magnetic field of $1 \times 10^{-4}$ $\mathrm{Wbm}^{-2}$. The frequency of revolution of the electron will be
(Take mass of electron $=\mathbf{9 . 0} \times \mathbf{1 0}^{-31} \mathbf{~ k g}$ )

1 $1.6 \times 10^{5} \mathrm{~Hz}$
2 $5.6 \times 10^{5} \mathrm{~Hz}$
3 $2.8 \times 10^{6} \mathrm{~Hz}$
4 $1.8 \times 10^{6} \mathrm{~Hz}$
Magnetism and Matter

154100 A magnet hung at $45^{\circ}$ with magnetic meridian makes an angle of $60^{\circ}$ with the horizontal. The actual value of the angle of dip is

1 $\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right)$
2 $\tan ^{-1}(\sqrt{6})$
3 $\tan ^{-1}\left(\sqrt{\frac{2}{3}}\right)$
4 $\tan ^{-1}\left(\sqrt{\frac{1}{2}}\right)$
Magnetism and Matter

154101 Two bar magnets oscillate in a horizontal plane in earth's magnetic field with time periods of 3 $s$ and $4 \mathrm{~s}$ respectively. If their moments of inertia are in the ratio of $3: 2$ then the ratio of their magnetic moments will be:

1 $2: 1$
2 $8: 3$
3 $1: 3$
4 $27: 16$
Magnetism and Matter

154102 A compass needle of oscillation magnetometer oscillates 20 times per minute at a place $P$ of dip $30^{\circ}$. The number of oscillations per minute become 10 at another place $Q$ of $60^{\circ}$ dip. The ratio of the total magnetic field at the two places $\left(B_{Q}: B_{P}\right)$ is :

1 $\sqrt{3}: 4$
2 $4: \sqrt{3}$
3 $\sqrt{3}: 2$
4 $2: \sqrt{3}$
Magnetism and Matter

154104 An electron with energy $0.1 \mathrm{keV}$ moves at right angle to the earth's magnetic field of $1 \times 10^{-4}$ $\mathrm{Wbm}^{-2}$. The frequency of revolution of the electron will be
(Take mass of electron $=\mathbf{9 . 0} \times \mathbf{1 0}^{-31} \mathbf{~ k g}$ )

1 $1.6 \times 10^{5} \mathrm{~Hz}$
2 $5.6 \times 10^{5} \mathrm{~Hz}$
3 $2.8 \times 10^{6} \mathrm{~Hz}$
4 $1.8 \times 10^{6} \mathrm{~Hz}$
Magnetism and Matter

154100 A magnet hung at $45^{\circ}$ with magnetic meridian makes an angle of $60^{\circ}$ with the horizontal. The actual value of the angle of dip is

1 $\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right)$
2 $\tan ^{-1}(\sqrt{6})$
3 $\tan ^{-1}\left(\sqrt{\frac{2}{3}}\right)$
4 $\tan ^{-1}\left(\sqrt{\frac{1}{2}}\right)$
Magnetism and Matter

154101 Two bar magnets oscillate in a horizontal plane in earth's magnetic field with time periods of 3 $s$ and $4 \mathrm{~s}$ respectively. If their moments of inertia are in the ratio of $3: 2$ then the ratio of their magnetic moments will be:

1 $2: 1$
2 $8: 3$
3 $1: 3$
4 $27: 16$
Magnetism and Matter

154102 A compass needle of oscillation magnetometer oscillates 20 times per minute at a place $P$ of dip $30^{\circ}$. The number of oscillations per minute become 10 at another place $Q$ of $60^{\circ}$ dip. The ratio of the total magnetic field at the two places $\left(B_{Q}: B_{P}\right)$ is :

1 $\sqrt{3}: 4$
2 $4: \sqrt{3}$
3 $\sqrt{3}: 2$
4 $2: \sqrt{3}$
Magnetism and Matter

154104 An electron with energy $0.1 \mathrm{keV}$ moves at right angle to the earth's magnetic field of $1 \times 10^{-4}$ $\mathrm{Wbm}^{-2}$. The frequency of revolution of the electron will be
(Take mass of electron $=\mathbf{9 . 0} \times \mathbf{1 0}^{-31} \mathbf{~ k g}$ )

1 $1.6 \times 10^{5} \mathrm{~Hz}$
2 $5.6 \times 10^{5} \mathrm{~Hz}$
3 $2.8 \times 10^{6} \mathrm{~Hz}$
4 $1.8 \times 10^{6} \mathrm{~Hz}$