06. Magnetic Dipole and Magnetic Moment Due to Current
Moving Charges & Magnetism

153892 A thin metallic wire of length $l$ carrying current $I$ is bent to from a circle. The induced magnetic moment of this system is

1 $\frac{4 \pi \mathrm{I}}{l^{2}}$
2 $\frac{\pi \mathrm{I}}{l}$
3 $\frac{\mathrm{I} l^{2}}{4 \pi}$
4 $\frac{\mathrm{I} l}{2 \pi}$
Moving Charges & Magnetism

153893 The magnitude of the magnetic field produced by a short bar magnet at a distance of $20 \mathrm{~cm}$ from the centre of the magnet in the normal bisector of the magnet if found to be $5 \times 10^{-6} \mathrm{~T}$. The magnetic moment of the bar magnet is

1 $0.1 \mathrm{~J} \mathrm{~T}^{-1}$
2 $0.4 \mathrm{~J} \mathrm{~T}^{-1}$
3 $0.6 \mathrm{JT}^{-1}$
4 $1.2 \mathrm{JT}^{-1}$
Moving Charges & Magnetism

153894 A short bar magnet placed with its axis at $45^{\circ}$ with a uniform external magnetic field of $28.3 \times$ $10^{-3} \mathrm{~T}$ experiences a torque of magnitude equal to $3.6 \times 10^{-5} \mathrm{~J}$. The magnitude of magnetic moment of the magnet is nearly.

1 $1.8 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
2 $1.2 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
3 $2.4 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
4 $1.6 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
Moving Charges & Magnetism

153895 The magnitude of axial field due to a bar magnet at a distance of $1 \mathrm{~m}$, is found to be $5 \times$ $10^{-8} \mathrm{~T}$. The magnetic moment of the bar magnet is $\left(\mu_{0}=4 \pi \times 10^{-7}\right)$

1 $0.20 \mathrm{Am}^{2}$
2 $0.25 \mathrm{Am}^{2}$
3 $0.50 \mathrm{Am}^{2}$
4 $0.40 \mathrm{Am}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153892 A thin metallic wire of length $l$ carrying current $I$ is bent to from a circle. The induced magnetic moment of this system is

1 $\frac{4 \pi \mathrm{I}}{l^{2}}$
2 $\frac{\pi \mathrm{I}}{l}$
3 $\frac{\mathrm{I} l^{2}}{4 \pi}$
4 $\frac{\mathrm{I} l}{2 \pi}$
Moving Charges & Magnetism

153893 The magnitude of the magnetic field produced by a short bar magnet at a distance of $20 \mathrm{~cm}$ from the centre of the magnet in the normal bisector of the magnet if found to be $5 \times 10^{-6} \mathrm{~T}$. The magnetic moment of the bar magnet is

1 $0.1 \mathrm{~J} \mathrm{~T}^{-1}$
2 $0.4 \mathrm{~J} \mathrm{~T}^{-1}$
3 $0.6 \mathrm{JT}^{-1}$
4 $1.2 \mathrm{JT}^{-1}$
Moving Charges & Magnetism

153894 A short bar magnet placed with its axis at $45^{\circ}$ with a uniform external magnetic field of $28.3 \times$ $10^{-3} \mathrm{~T}$ experiences a torque of magnitude equal to $3.6 \times 10^{-5} \mathrm{~J}$. The magnitude of magnetic moment of the magnet is nearly.

1 $1.8 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
2 $1.2 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
3 $2.4 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
4 $1.6 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
Moving Charges & Magnetism

153895 The magnitude of axial field due to a bar magnet at a distance of $1 \mathrm{~m}$, is found to be $5 \times$ $10^{-8} \mathrm{~T}$. The magnetic moment of the bar magnet is $\left(\mu_{0}=4 \pi \times 10^{-7}\right)$

1 $0.20 \mathrm{Am}^{2}$
2 $0.25 \mathrm{Am}^{2}$
3 $0.50 \mathrm{Am}^{2}$
4 $0.40 \mathrm{Am}^{2}$
Moving Charges & Magnetism

153892 A thin metallic wire of length $l$ carrying current $I$ is bent to from a circle. The induced magnetic moment of this system is

1 $\frac{4 \pi \mathrm{I}}{l^{2}}$
2 $\frac{\pi \mathrm{I}}{l}$
3 $\frac{\mathrm{I} l^{2}}{4 \pi}$
4 $\frac{\mathrm{I} l}{2 \pi}$
Moving Charges & Magnetism

153893 The magnitude of the magnetic field produced by a short bar magnet at a distance of $20 \mathrm{~cm}$ from the centre of the magnet in the normal bisector of the magnet if found to be $5 \times 10^{-6} \mathrm{~T}$. The magnetic moment of the bar magnet is

1 $0.1 \mathrm{~J} \mathrm{~T}^{-1}$
2 $0.4 \mathrm{~J} \mathrm{~T}^{-1}$
3 $0.6 \mathrm{JT}^{-1}$
4 $1.2 \mathrm{JT}^{-1}$
Moving Charges & Magnetism

153894 A short bar magnet placed with its axis at $45^{\circ}$ with a uniform external magnetic field of $28.3 \times$ $10^{-3} \mathrm{~T}$ experiences a torque of magnitude equal to $3.6 \times 10^{-5} \mathrm{~J}$. The magnitude of magnetic moment of the magnet is nearly.

1 $1.8 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
2 $1.2 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
3 $2.4 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
4 $1.6 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
Moving Charges & Magnetism

153895 The magnitude of axial field due to a bar magnet at a distance of $1 \mathrm{~m}$, is found to be $5 \times$ $10^{-8} \mathrm{~T}$. The magnetic moment of the bar magnet is $\left(\mu_{0}=4 \pi \times 10^{-7}\right)$

1 $0.20 \mathrm{Am}^{2}$
2 $0.25 \mathrm{Am}^{2}$
3 $0.50 \mathrm{Am}^{2}$
4 $0.40 \mathrm{Am}^{2}$
Moving Charges & Magnetism

153892 A thin metallic wire of length $l$ carrying current $I$ is bent to from a circle. The induced magnetic moment of this system is

1 $\frac{4 \pi \mathrm{I}}{l^{2}}$
2 $\frac{\pi \mathrm{I}}{l}$
3 $\frac{\mathrm{I} l^{2}}{4 \pi}$
4 $\frac{\mathrm{I} l}{2 \pi}$
Moving Charges & Magnetism

153893 The magnitude of the magnetic field produced by a short bar magnet at a distance of $20 \mathrm{~cm}$ from the centre of the magnet in the normal bisector of the magnet if found to be $5 \times 10^{-6} \mathrm{~T}$. The magnetic moment of the bar magnet is

1 $0.1 \mathrm{~J} \mathrm{~T}^{-1}$
2 $0.4 \mathrm{~J} \mathrm{~T}^{-1}$
3 $0.6 \mathrm{JT}^{-1}$
4 $1.2 \mathrm{JT}^{-1}$
Moving Charges & Magnetism

153894 A short bar magnet placed with its axis at $45^{\circ}$ with a uniform external magnetic field of $28.3 \times$ $10^{-3} \mathrm{~T}$ experiences a torque of magnitude equal to $3.6 \times 10^{-5} \mathrm{~J}$. The magnitude of magnetic moment of the magnet is nearly.

1 $1.8 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
2 $1.2 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
3 $2.4 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
4 $1.6 \times 10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
Moving Charges & Magnetism

153895 The magnitude of axial field due to a bar magnet at a distance of $1 \mathrm{~m}$, is found to be $5 \times$ $10^{-8} \mathrm{~T}$. The magnetic moment of the bar magnet is $\left(\mu_{0}=4 \pi \times 10^{-7}\right)$

1 $0.20 \mathrm{Am}^{2}$
2 $0.25 \mathrm{Am}^{2}$
3 $0.50 \mathrm{Am}^{2}$
4 $0.40 \mathrm{Am}^{2}$