06. Magnetic Dipole and Magnetic Moment Due to Current
Moving Charges & Magnetism

153948 The moment of a magnet is $1 \mu \mathrm{Wb}-\mathrm{m}$ and the force acting on each pole in a uniform magnetic field of strength 0.38 oersted is $1.024 \times 10^{-4} \mathrm{~N}$. Distance between the poles of the magnet is

1 $1.56 \times 10^{-4} \mathrm{~cm}$
2 $0.37 \times 10^{-4} \mathrm{~cm}$
3 $2.34 \times 10^{-4} \mathrm{~cm}$
4 $1.17 \times 10^{-4} \mathrm{~cm}$
Moving Charges & Magnetism

153949 The magnetic field strength at a point at a distance $d$ from the centre, on the axial line of a very short bar magnet of magnetic moment $M$. is $B$. The magnetic induction at a distance $2 d$ from center, on equatorial line of magnet of magnetic moment $8 \mathrm{M}$, will be

1 $4 \mathrm{~B}$
2 $\frac{B}{2}$
3 $2 \mathrm{~B}$
4 $\frac{B}{4}$
Moving Charges & Magnetism

153950 Two similar moments $P$ and $Q$ each of magnetic moment $M$ are taken. If $P$ is cut along its axial line and $Q$ is cut along its equatorial line all the four pieces obtained have each of

1 equal pole strength
2 magnetic moment $\frac{\mathrm{M}}{4}$
3 magnetic moment $\frac{\mathrm{M}}{2}$
4 magnetic moment $\mathrm{M}$
Moving Charges & Magnetism

153951 A magnet of length $10 \mathrm{~cm}$ and magnetic moment $1 \mathrm{Am}^{2}$ is placed along side $\mathrm{AB}$ of an equilateral triangle $\mathrm{ABC}$. If the length of the side $A B$ is $10 \mathrm{~cm}$. The magnetic induction at the point $C$ is $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$

1 $10^{-9} \mathrm{~T}$
2 $10^{-7} \mathrm{~T}$
3 $10^{-5} \mathrm{~T}$
4 $10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153948 The moment of a magnet is $1 \mu \mathrm{Wb}-\mathrm{m}$ and the force acting on each pole in a uniform magnetic field of strength 0.38 oersted is $1.024 \times 10^{-4} \mathrm{~N}$. Distance between the poles of the magnet is

1 $1.56 \times 10^{-4} \mathrm{~cm}$
2 $0.37 \times 10^{-4} \mathrm{~cm}$
3 $2.34 \times 10^{-4} \mathrm{~cm}$
4 $1.17 \times 10^{-4} \mathrm{~cm}$
Moving Charges & Magnetism

153949 The magnetic field strength at a point at a distance $d$ from the centre, on the axial line of a very short bar magnet of magnetic moment $M$. is $B$. The magnetic induction at a distance $2 d$ from center, on equatorial line of magnet of magnetic moment $8 \mathrm{M}$, will be

1 $4 \mathrm{~B}$
2 $\frac{B}{2}$
3 $2 \mathrm{~B}$
4 $\frac{B}{4}$
Moving Charges & Magnetism

153950 Two similar moments $P$ and $Q$ each of magnetic moment $M$ are taken. If $P$ is cut along its axial line and $Q$ is cut along its equatorial line all the four pieces obtained have each of

1 equal pole strength
2 magnetic moment $\frac{\mathrm{M}}{4}$
3 magnetic moment $\frac{\mathrm{M}}{2}$
4 magnetic moment $\mathrm{M}$
Moving Charges & Magnetism

153951 A magnet of length $10 \mathrm{~cm}$ and magnetic moment $1 \mathrm{Am}^{2}$ is placed along side $\mathrm{AB}$ of an equilateral triangle $\mathrm{ABC}$. If the length of the side $A B$ is $10 \mathrm{~cm}$. The magnetic induction at the point $C$ is $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$

1 $10^{-9} \mathrm{~T}$
2 $10^{-7} \mathrm{~T}$
3 $10^{-5} \mathrm{~T}$
4 $10^{-4} \mathrm{~T}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153948 The moment of a magnet is $1 \mu \mathrm{Wb}-\mathrm{m}$ and the force acting on each pole in a uniform magnetic field of strength 0.38 oersted is $1.024 \times 10^{-4} \mathrm{~N}$. Distance between the poles of the magnet is

1 $1.56 \times 10^{-4} \mathrm{~cm}$
2 $0.37 \times 10^{-4} \mathrm{~cm}$
3 $2.34 \times 10^{-4} \mathrm{~cm}$
4 $1.17 \times 10^{-4} \mathrm{~cm}$
Moving Charges & Magnetism

153949 The magnetic field strength at a point at a distance $d$ from the centre, on the axial line of a very short bar magnet of magnetic moment $M$. is $B$. The magnetic induction at a distance $2 d$ from center, on equatorial line of magnet of magnetic moment $8 \mathrm{M}$, will be

1 $4 \mathrm{~B}$
2 $\frac{B}{2}$
3 $2 \mathrm{~B}$
4 $\frac{B}{4}$
Moving Charges & Magnetism

153950 Two similar moments $P$ and $Q$ each of magnetic moment $M$ are taken. If $P$ is cut along its axial line and $Q$ is cut along its equatorial line all the four pieces obtained have each of

1 equal pole strength
2 magnetic moment $\frac{\mathrm{M}}{4}$
3 magnetic moment $\frac{\mathrm{M}}{2}$
4 magnetic moment $\mathrm{M}$
Moving Charges & Magnetism

153951 A magnet of length $10 \mathrm{~cm}$ and magnetic moment $1 \mathrm{Am}^{2}$ is placed along side $\mathrm{AB}$ of an equilateral triangle $\mathrm{ABC}$. If the length of the side $A B$ is $10 \mathrm{~cm}$. The magnetic induction at the point $C$ is $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$

1 $10^{-9} \mathrm{~T}$
2 $10^{-7} \mathrm{~T}$
3 $10^{-5} \mathrm{~T}$
4 $10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153948 The moment of a magnet is $1 \mu \mathrm{Wb}-\mathrm{m}$ and the force acting on each pole in a uniform magnetic field of strength 0.38 oersted is $1.024 \times 10^{-4} \mathrm{~N}$. Distance between the poles of the magnet is

1 $1.56 \times 10^{-4} \mathrm{~cm}$
2 $0.37 \times 10^{-4} \mathrm{~cm}$
3 $2.34 \times 10^{-4} \mathrm{~cm}$
4 $1.17 \times 10^{-4} \mathrm{~cm}$
Moving Charges & Magnetism

153949 The magnetic field strength at a point at a distance $d$ from the centre, on the axial line of a very short bar magnet of magnetic moment $M$. is $B$. The magnetic induction at a distance $2 d$ from center, on equatorial line of magnet of magnetic moment $8 \mathrm{M}$, will be

1 $4 \mathrm{~B}$
2 $\frac{B}{2}$
3 $2 \mathrm{~B}$
4 $\frac{B}{4}$
Moving Charges & Magnetism

153950 Two similar moments $P$ and $Q$ each of magnetic moment $M$ are taken. If $P$ is cut along its axial line and $Q$ is cut along its equatorial line all the four pieces obtained have each of

1 equal pole strength
2 magnetic moment $\frac{\mathrm{M}}{4}$
3 magnetic moment $\frac{\mathrm{M}}{2}$
4 magnetic moment $\mathrm{M}$
Moving Charges & Magnetism

153951 A magnet of length $10 \mathrm{~cm}$ and magnetic moment $1 \mathrm{Am}^{2}$ is placed along side $\mathrm{AB}$ of an equilateral triangle $\mathrm{ABC}$. If the length of the side $A B$ is $10 \mathrm{~cm}$. The magnetic induction at the point $C$ is $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$

1 $10^{-9} \mathrm{~T}$
2 $10^{-7} \mathrm{~T}$
3 $10^{-5} \mathrm{~T}$
4 $10^{-4} \mathrm{~T}$