05. Cyclotron
Moving Charges & Magnetism

153856 A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$

1 12
2 18
3 16
4 32
Moving Charges & Magnetism

153860 A short bar magnet placed with its axis at $30^{\circ}$ with an external field of $800 \mathrm{G}$ experiences a torque of $0.016 \mathrm{Nm}$. The magnetic moment of the bar magnet is

1 $0.4 \mathrm{Am}^{2}$
2 $0.5 \mathrm{Am}^{2}$
3 $0.6 \mathrm{Am}^{2}$
4 $0.7 \mathrm{Am}^{2}$
Moving Charges & Magnetism

153861 A particle of charge $q$ and mass $m$ moves in a circular orbit of radius $r$ with angular speed $\omega$. The ratio of the magnitude of its magnetic moment to that of its angular momentum is

1 $\frac{\mathrm{q}}{\mathrm{m} \omega}$
2 $\frac{\mathrm{q}}{2 \mathrm{~m} \mathrm{r}}$
3 $\frac{\mathrm{q}}{2 \mathrm{~m}}$
4 $\frac{2 q}{m}$
Moving Charges & Magnetism

153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)

1 $\frac{\pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
2 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \mathrm{qvBr}$
3 $\frac{4 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
4 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
Moving Charges & Magnetism

153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :

1 $\alpha$-particles
2 protons
3 deuterons
4 Same for all
Moving Charges & Magnetism

153856 A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$

1 12
2 18
3 16
4 32
Moving Charges & Magnetism

153860 A short bar magnet placed with its axis at $30^{\circ}$ with an external field of $800 \mathrm{G}$ experiences a torque of $0.016 \mathrm{Nm}$. The magnetic moment of the bar magnet is

1 $0.4 \mathrm{Am}^{2}$
2 $0.5 \mathrm{Am}^{2}$
3 $0.6 \mathrm{Am}^{2}$
4 $0.7 \mathrm{Am}^{2}$
Moving Charges & Magnetism

153861 A particle of charge $q$ and mass $m$ moves in a circular orbit of radius $r$ with angular speed $\omega$. The ratio of the magnitude of its magnetic moment to that of its angular momentum is

1 $\frac{\mathrm{q}}{\mathrm{m} \omega}$
2 $\frac{\mathrm{q}}{2 \mathrm{~m} \mathrm{r}}$
3 $\frac{\mathrm{q}}{2 \mathrm{~m}}$
4 $\frac{2 q}{m}$
Moving Charges & Magnetism

153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)

1 $\frac{\pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
2 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \mathrm{qvBr}$
3 $\frac{4 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
4 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
Moving Charges & Magnetism

153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :

1 $\alpha$-particles
2 protons
3 deuterons
4 Same for all
Moving Charges & Magnetism

153856 A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$

1 12
2 18
3 16
4 32
Moving Charges & Magnetism

153860 A short bar magnet placed with its axis at $30^{\circ}$ with an external field of $800 \mathrm{G}$ experiences a torque of $0.016 \mathrm{Nm}$. The magnetic moment of the bar magnet is

1 $0.4 \mathrm{Am}^{2}$
2 $0.5 \mathrm{Am}^{2}$
3 $0.6 \mathrm{Am}^{2}$
4 $0.7 \mathrm{Am}^{2}$
Moving Charges & Magnetism

153861 A particle of charge $q$ and mass $m$ moves in a circular orbit of radius $r$ with angular speed $\omega$. The ratio of the magnitude of its magnetic moment to that of its angular momentum is

1 $\frac{\mathrm{q}}{\mathrm{m} \omega}$
2 $\frac{\mathrm{q}}{2 \mathrm{~m} \mathrm{r}}$
3 $\frac{\mathrm{q}}{2 \mathrm{~m}}$
4 $\frac{2 q}{m}$
Moving Charges & Magnetism

153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)

1 $\frac{\pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
2 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \mathrm{qvBr}$
3 $\frac{4 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
4 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
Moving Charges & Magnetism

153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :

1 $\alpha$-particles
2 protons
3 deuterons
4 Same for all
Moving Charges & Magnetism

153856 A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$

1 12
2 18
3 16
4 32
Moving Charges & Magnetism

153860 A short bar magnet placed with its axis at $30^{\circ}$ with an external field of $800 \mathrm{G}$ experiences a torque of $0.016 \mathrm{Nm}$. The magnetic moment of the bar magnet is

1 $0.4 \mathrm{Am}^{2}$
2 $0.5 \mathrm{Am}^{2}$
3 $0.6 \mathrm{Am}^{2}$
4 $0.7 \mathrm{Am}^{2}$
Moving Charges & Magnetism

153861 A particle of charge $q$ and mass $m$ moves in a circular orbit of radius $r$ with angular speed $\omega$. The ratio of the magnitude of its magnetic moment to that of its angular momentum is

1 $\frac{\mathrm{q}}{\mathrm{m} \omega}$
2 $\frac{\mathrm{q}}{2 \mathrm{~m} \mathrm{r}}$
3 $\frac{\mathrm{q}}{2 \mathrm{~m}}$
4 $\frac{2 q}{m}$
Moving Charges & Magnetism

153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)

1 $\frac{\pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
2 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \mathrm{qvBr}$
3 $\frac{4 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
4 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
Moving Charges & Magnetism

153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :

1 $\alpha$-particles
2 protons
3 deuterons
4 Same for all
Moving Charges & Magnetism

153856 A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$

1 12
2 18
3 16
4 32
Moving Charges & Magnetism

153860 A short bar magnet placed with its axis at $30^{\circ}$ with an external field of $800 \mathrm{G}$ experiences a torque of $0.016 \mathrm{Nm}$. The magnetic moment of the bar magnet is

1 $0.4 \mathrm{Am}^{2}$
2 $0.5 \mathrm{Am}^{2}$
3 $0.6 \mathrm{Am}^{2}$
4 $0.7 \mathrm{Am}^{2}$
Moving Charges & Magnetism

153861 A particle of charge $q$ and mass $m$ moves in a circular orbit of radius $r$ with angular speed $\omega$. The ratio of the magnitude of its magnetic moment to that of its angular momentum is

1 $\frac{\mathrm{q}}{\mathrm{m} \omega}$
2 $\frac{\mathrm{q}}{2 \mathrm{~m} \mathrm{r}}$
3 $\frac{\mathrm{q}}{2 \mathrm{~m}}$
4 $\frac{2 q}{m}$
Moving Charges & Magnetism

153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)

1 $\frac{\pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
2 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \mathrm{qvBr}$
3 $\frac{4 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
4 $\frac{2 \pi \mathrm{nm}}{\mathrm{q}}, \frac{\mathrm{qvBr}}{2}$
Moving Charges & Magnetism

153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :

1 $\alpha$-particles
2 protons
3 deuterons
4 Same for all