153856
A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$
153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)
153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :
153856
A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$
153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)
153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :
153856
A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$
153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)
153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :
153856
A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$
153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)
153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :
153856
A cyclotron is used to accelerate protons. If the operating magnetic field is $1.0 \mathrm{~T}$ and the radius of the cyclotron 'dees' is $60 \mathrm{~cm}$, the kinetic energy of the accelerated protons in $\mathrm{MeV}$ will be:
$\text { [use } \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text { ] }$
153862 A cyclotron's oscillator frequency is ' $n$ ' and radius of the dees is ' $r$ '. The operating magnetic field (B) for accelerating protons of charge ' $q$ ' and kinetic energy of protons produced by the accelerator is respectively $($ ' $\mathrm{m}$ ' and ' $v$ ' be the mass and velocity of proton)
153864 A cyclotron is used to accelerate protons $\left({ }_{1}^{1} \mathrm{H}\right)$ deuterons $\left({ }_{1}^{2} \mathrm{H}\right)$ and $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions, the minimum $\mathrm{KE}$ is gained by :