04. Force and Torque on Current Carrying Conductor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153799 Two thin long parallel wires separated by a distance $b$ meter are carrying a current of $I$ ampere each. The magnitude of the force per unit length exerted by one wire on the other is [ $\mu_{0}=$ permeability constant]

1 $\mu_{0} \mathrm{I}^{2} / \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
2 $\mu_{0} \mathrm{I}^{2} / 2 \pi \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
3 $\mu_{0} \mathrm{I}^{2} / 2 \pi \mathrm{b} \mathrm{N} / \mathrm{m}$
4 $\mu_{0} \mathrm{I} / 2 \pi \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
Moving Charges & Magnetism

153800 A wire of length $\ell$ is bent to the form of a circular coil of some turns. A current i flows through the coil. The coil is placed in a uniform magnetic field $B$. The maximum torque on the coil can be

1 $\frac{\mathrm{iB} \ell^{2}}{4 \pi}$
2 $\frac{\mathrm{iB} \ell^{2}}{\pi}$
3 $\frac{\mathrm{iB} \ell^{2}}{2 \pi}$
4 $\frac{2 \mathrm{iB} \ell^{2}}{\pi}$
Moving Charges & Magnetism

153801 Two parallel wires carrying currents $I_{1}$ and $I_{2}$ in opposite directions and separated by a distance $d$ experience a

1 Repulsive force $\mu_{0} I_{1} I_{2} / 2 \pi d$
2 Attractive force $\mu_{0} I_{1} I_{2} / 2 \pi d$
3 Repulsive force $\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} / 2 \pi \mathrm{d}^{2}$
4 Attractive force $\mu_{0} I_{1} I_{2} / 2 \pi d^{2}$
Moving Charges & Magnetism

153802 The wire of length $l$ is bent into a circular loop of a single turn and is suspended in a magnetic field of induction $B$. When a current $I$ is passed through the loop, the maximum torque experienced by it is

1 $\left(\frac{1}{4 \pi}\right) \mathrm{BI} l^{2}$
2 $\left(\frac{1}{4 \pi}\right) \mathrm{BI}^{2} l$
3 $\left(\frac{1}{4 \pi}\right) \mathrm{BI} l$
4 $\left(\frac{1}{4 \pi}\right) \mathrm{B}^{2} \mathrm{I} l$
5 $\left(\frac{1}{4 \pi}\right) \mathrm{B}^{2} \mathrm{I}^{2} l^{2}$
Moving Charges & Magnetism

153799 Two thin long parallel wires separated by a distance $b$ meter are carrying a current of $I$ ampere each. The magnitude of the force per unit length exerted by one wire on the other is [ $\mu_{0}=$ permeability constant]

1 $\mu_{0} \mathrm{I}^{2} / \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
2 $\mu_{0} \mathrm{I}^{2} / 2 \pi \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
3 $\mu_{0} \mathrm{I}^{2} / 2 \pi \mathrm{b} \mathrm{N} / \mathrm{m}$
4 $\mu_{0} \mathrm{I} / 2 \pi \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
Moving Charges & Magnetism

153800 A wire of length $\ell$ is bent to the form of a circular coil of some turns. A current i flows through the coil. The coil is placed in a uniform magnetic field $B$. The maximum torque on the coil can be

1 $\frac{\mathrm{iB} \ell^{2}}{4 \pi}$
2 $\frac{\mathrm{iB} \ell^{2}}{\pi}$
3 $\frac{\mathrm{iB} \ell^{2}}{2 \pi}$
4 $\frac{2 \mathrm{iB} \ell^{2}}{\pi}$
Moving Charges & Magnetism

153801 Two parallel wires carrying currents $I_{1}$ and $I_{2}$ in opposite directions and separated by a distance $d$ experience a

1 Repulsive force $\mu_{0} I_{1} I_{2} / 2 \pi d$
2 Attractive force $\mu_{0} I_{1} I_{2} / 2 \pi d$
3 Repulsive force $\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} / 2 \pi \mathrm{d}^{2}$
4 Attractive force $\mu_{0} I_{1} I_{2} / 2 \pi d^{2}$
Moving Charges & Magnetism

153802 The wire of length $l$ is bent into a circular loop of a single turn and is suspended in a magnetic field of induction $B$. When a current $I$ is passed through the loop, the maximum torque experienced by it is

1 $\left(\frac{1}{4 \pi}\right) \mathrm{BI} l^{2}$
2 $\left(\frac{1}{4 \pi}\right) \mathrm{BI}^{2} l$
3 $\left(\frac{1}{4 \pi}\right) \mathrm{BI} l$
4 $\left(\frac{1}{4 \pi}\right) \mathrm{B}^{2} \mathrm{I} l$
5 $\left(\frac{1}{4 \pi}\right) \mathrm{B}^{2} \mathrm{I}^{2} l^{2}$
Moving Charges & Magnetism

153799 Two thin long parallel wires separated by a distance $b$ meter are carrying a current of $I$ ampere each. The magnitude of the force per unit length exerted by one wire on the other is [ $\mu_{0}=$ permeability constant]

1 $\mu_{0} \mathrm{I}^{2} / \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
2 $\mu_{0} \mathrm{I}^{2} / 2 \pi \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
3 $\mu_{0} \mathrm{I}^{2} / 2 \pi \mathrm{b} \mathrm{N} / \mathrm{m}$
4 $\mu_{0} \mathrm{I} / 2 \pi \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
Moving Charges & Magnetism

153800 A wire of length $\ell$ is bent to the form of a circular coil of some turns. A current i flows through the coil. The coil is placed in a uniform magnetic field $B$. The maximum torque on the coil can be

1 $\frac{\mathrm{iB} \ell^{2}}{4 \pi}$
2 $\frac{\mathrm{iB} \ell^{2}}{\pi}$
3 $\frac{\mathrm{iB} \ell^{2}}{2 \pi}$
4 $\frac{2 \mathrm{iB} \ell^{2}}{\pi}$
Moving Charges & Magnetism

153801 Two parallel wires carrying currents $I_{1}$ and $I_{2}$ in opposite directions and separated by a distance $d$ experience a

1 Repulsive force $\mu_{0} I_{1} I_{2} / 2 \pi d$
2 Attractive force $\mu_{0} I_{1} I_{2} / 2 \pi d$
3 Repulsive force $\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} / 2 \pi \mathrm{d}^{2}$
4 Attractive force $\mu_{0} I_{1} I_{2} / 2 \pi d^{2}$
Moving Charges & Magnetism

153802 The wire of length $l$ is bent into a circular loop of a single turn and is suspended in a magnetic field of induction $B$. When a current $I$ is passed through the loop, the maximum torque experienced by it is

1 $\left(\frac{1}{4 \pi}\right) \mathrm{BI} l^{2}$
2 $\left(\frac{1}{4 \pi}\right) \mathrm{BI}^{2} l$
3 $\left(\frac{1}{4 \pi}\right) \mathrm{BI} l$
4 $\left(\frac{1}{4 \pi}\right) \mathrm{B}^{2} \mathrm{I} l$
5 $\left(\frac{1}{4 \pi}\right) \mathrm{B}^{2} \mathrm{I}^{2} l^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153799 Two thin long parallel wires separated by a distance $b$ meter are carrying a current of $I$ ampere each. The magnitude of the force per unit length exerted by one wire on the other is [ $\mu_{0}=$ permeability constant]

1 $\mu_{0} \mathrm{I}^{2} / \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
2 $\mu_{0} \mathrm{I}^{2} / 2 \pi \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
3 $\mu_{0} \mathrm{I}^{2} / 2 \pi \mathrm{b} \mathrm{N} / \mathrm{m}$
4 $\mu_{0} \mathrm{I} / 2 \pi \mathrm{b}^{2} \mathrm{~N} / \mathrm{m}$
Moving Charges & Magnetism

153800 A wire of length $\ell$ is bent to the form of a circular coil of some turns. A current i flows through the coil. The coil is placed in a uniform magnetic field $B$. The maximum torque on the coil can be

1 $\frac{\mathrm{iB} \ell^{2}}{4 \pi}$
2 $\frac{\mathrm{iB} \ell^{2}}{\pi}$
3 $\frac{\mathrm{iB} \ell^{2}}{2 \pi}$
4 $\frac{2 \mathrm{iB} \ell^{2}}{\pi}$
Moving Charges & Magnetism

153801 Two parallel wires carrying currents $I_{1}$ and $I_{2}$ in opposite directions and separated by a distance $d$ experience a

1 Repulsive force $\mu_{0} I_{1} I_{2} / 2 \pi d$
2 Attractive force $\mu_{0} I_{1} I_{2} / 2 \pi d$
3 Repulsive force $\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} / 2 \pi \mathrm{d}^{2}$
4 Attractive force $\mu_{0} I_{1} I_{2} / 2 \pi d^{2}$
Moving Charges & Magnetism

153802 The wire of length $l$ is bent into a circular loop of a single turn and is suspended in a magnetic field of induction $B$. When a current $I$ is passed through the loop, the maximum torque experienced by it is

1 $\left(\frac{1}{4 \pi}\right) \mathrm{BI} l^{2}$
2 $\left(\frac{1}{4 \pi}\right) \mathrm{BI}^{2} l$
3 $\left(\frac{1}{4 \pi}\right) \mathrm{BI} l$
4 $\left(\frac{1}{4 \pi}\right) \mathrm{B}^{2} \mathrm{I} l$
5 $\left(\frac{1}{4 \pi}\right) \mathrm{B}^{2} \mathrm{I}^{2} l^{2}$