153148
Five wire having currents $I_{1}=1 \mathrm{~A}, I_{2}=2 \mathrm{~A}, I_{3}=$ $3 \mathrm{~A}, \mathrm{I}_{4}=1 \mathrm{~A}$ and $\mathrm{I}_{5}=4 \mathrm{~A}$
cut the page perpendicularly at points. $1,2,3,4$ and 5. The value of line integral of $\vec{B}$ around the dotted closed path is $\left(\right.$ i.e. $\left.\int \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}\right)$ is
153148
Five wire having currents $I_{1}=1 \mathrm{~A}, I_{2}=2 \mathrm{~A}, I_{3}=$ $3 \mathrm{~A}, \mathrm{I}_{4}=1 \mathrm{~A}$ and $\mathrm{I}_{5}=4 \mathrm{~A}$
cut the page perpendicularly at points. $1,2,3,4$ and 5. The value of line integral of $\vec{B}$ around the dotted closed path is $\left(\right.$ i.e. $\left.\int \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}\right)$ is
153148
Five wire having currents $I_{1}=1 \mathrm{~A}, I_{2}=2 \mathrm{~A}, I_{3}=$ $3 \mathrm{~A}, \mathrm{I}_{4}=1 \mathrm{~A}$ and $\mathrm{I}_{5}=4 \mathrm{~A}$
cut the page perpendicularly at points. $1,2,3,4$ and 5. The value of line integral of $\vec{B}$ around the dotted closed path is $\left(\right.$ i.e. $\left.\int \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}\right)$ is
153148
Five wire having currents $I_{1}=1 \mathrm{~A}, I_{2}=2 \mathrm{~A}, I_{3}=$ $3 \mathrm{~A}, \mathrm{I}_{4}=1 \mathrm{~A}$ and $\mathrm{I}_{5}=4 \mathrm{~A}$
cut the page perpendicularly at points. $1,2,3,4$ and 5. The value of line integral of $\vec{B}$ around the dotted closed path is $\left(\right.$ i.e. $\left.\int \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}\right)$ is
153148
Five wire having currents $I_{1}=1 \mathrm{~A}, I_{2}=2 \mathrm{~A}, I_{3}=$ $3 \mathrm{~A}, \mathrm{I}_{4}=1 \mathrm{~A}$ and $\mathrm{I}_{5}=4 \mathrm{~A}$
cut the page perpendicularly at points. $1,2,3,4$ and 5. The value of line integral of $\vec{B}$ around the dotted closed path is $\left(\right.$ i.e. $\left.\int \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}\right)$ is