00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153387 ABCD is a square loop made of a uniform conducting wire. The current enters the loop at $A$ and leaves at $D$. The magnetic field is:

1 zero at all points inside the loop
2 zero at all points outside the loop
3 maximum at the centre of the loop
4 zero only at the centre of the loop
Moving Charges & Magnetism

153388 A conductor of length $5 \mathrm{~cm}$ is moved parallel to itself with a speed of $2 \mathrm{~m} / \mathrm{s}$ perpendicular to uniform magnetic field of $10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$. The induced e.m.f. generated is

1 $2 \times 10^{-3} \mathrm{~V}$
2 $1 \times 10^{-3} \mathrm{~V}$
3 $1 \times 10^{-4} \mathrm{~V}$
4 $2 \times 10^{-4} \mathrm{~V}$
Moving Charges & Magnetism

153391 The magnetic needle has magnetic moment $8.7 \times$ $10^{-2} \mathrm{~A} \mathrm{~m}^{2}$ and moment of inertia $11.5 \times 10^{-6} \mathrm{~kg}$ $\mathrm{m}^{2}$. It performs 10 complete oscillations in $6.70 \mathrm{~s}$, what is the magnitude of the magnetic field?

1 $0.012 \mathrm{~T}$
2 $0.120 \mathrm{~T}$
3 $1.200 \mathrm{~T}$
4 $2.10 \mathrm{~T}$
Moving Charges & Magnetism

153392 A current of $1 \mathrm{~A}$ is flowing along positive $\mathrm{x}$-axis through a straight wire of length $0.5 \mathrm{~m}$ placed in a region of a magnetic field given by $B=(2 i$ $+4 j) T$. The magnitude and the direction of the force experienced by the wire respectively are

1 $\sqrt{18} \mathrm{~N}$, along positive $\mathrm{z}$-axis
2 $\sqrt{20} \mathrm{~N}$, along positive $\mathrm{x}$-axis
3 $2 \mathrm{~N}$, along positive $\mathrm{z}$-axis
4 $4 \mathrm{~N}$, along positive $y$-axis
Moving Charges & Magnetism

153393 A coil having $\mathbf{N}$ turns carries a current as shown in the figure. The magnetic field intensity at point $P$ is

1 $\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
2 $\frac{\mu_{0} \mathrm{Ni}}{2 \mathrm{R}}$
3 $\frac{\mu_{0} N i R^{2}}{\left(R^{2}+x^{2}\right)}$
4 zero
Moving Charges & Magnetism

153387 ABCD is a square loop made of a uniform conducting wire. The current enters the loop at $A$ and leaves at $D$. The magnetic field is:

1 zero at all points inside the loop
2 zero at all points outside the loop
3 maximum at the centre of the loop
4 zero only at the centre of the loop
Moving Charges & Magnetism

153388 A conductor of length $5 \mathrm{~cm}$ is moved parallel to itself with a speed of $2 \mathrm{~m} / \mathrm{s}$ perpendicular to uniform magnetic field of $10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$. The induced e.m.f. generated is

1 $2 \times 10^{-3} \mathrm{~V}$
2 $1 \times 10^{-3} \mathrm{~V}$
3 $1 \times 10^{-4} \mathrm{~V}$
4 $2 \times 10^{-4} \mathrm{~V}$
Moving Charges & Magnetism

153391 The magnetic needle has magnetic moment $8.7 \times$ $10^{-2} \mathrm{~A} \mathrm{~m}^{2}$ and moment of inertia $11.5 \times 10^{-6} \mathrm{~kg}$ $\mathrm{m}^{2}$. It performs 10 complete oscillations in $6.70 \mathrm{~s}$, what is the magnitude of the magnetic field?

1 $0.012 \mathrm{~T}$
2 $0.120 \mathrm{~T}$
3 $1.200 \mathrm{~T}$
4 $2.10 \mathrm{~T}$
Moving Charges & Magnetism

153392 A current of $1 \mathrm{~A}$ is flowing along positive $\mathrm{x}$-axis through a straight wire of length $0.5 \mathrm{~m}$ placed in a region of a magnetic field given by $B=(2 i$ $+4 j) T$. The magnitude and the direction of the force experienced by the wire respectively are

1 $\sqrt{18} \mathrm{~N}$, along positive $\mathrm{z}$-axis
2 $\sqrt{20} \mathrm{~N}$, along positive $\mathrm{x}$-axis
3 $2 \mathrm{~N}$, along positive $\mathrm{z}$-axis
4 $4 \mathrm{~N}$, along positive $y$-axis
Moving Charges & Magnetism

153393 A coil having $\mathbf{N}$ turns carries a current as shown in the figure. The magnetic field intensity at point $P$ is

1 $\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
2 $\frac{\mu_{0} \mathrm{Ni}}{2 \mathrm{R}}$
3 $\frac{\mu_{0} N i R^{2}}{\left(R^{2}+x^{2}\right)}$
4 zero
Moving Charges & Magnetism

153387 ABCD is a square loop made of a uniform conducting wire. The current enters the loop at $A$ and leaves at $D$. The magnetic field is:

1 zero at all points inside the loop
2 zero at all points outside the loop
3 maximum at the centre of the loop
4 zero only at the centre of the loop
Moving Charges & Magnetism

153388 A conductor of length $5 \mathrm{~cm}$ is moved parallel to itself with a speed of $2 \mathrm{~m} / \mathrm{s}$ perpendicular to uniform magnetic field of $10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$. The induced e.m.f. generated is

1 $2 \times 10^{-3} \mathrm{~V}$
2 $1 \times 10^{-3} \mathrm{~V}$
3 $1 \times 10^{-4} \mathrm{~V}$
4 $2 \times 10^{-4} \mathrm{~V}$
Moving Charges & Magnetism

153391 The magnetic needle has magnetic moment $8.7 \times$ $10^{-2} \mathrm{~A} \mathrm{~m}^{2}$ and moment of inertia $11.5 \times 10^{-6} \mathrm{~kg}$ $\mathrm{m}^{2}$. It performs 10 complete oscillations in $6.70 \mathrm{~s}$, what is the magnitude of the magnetic field?

1 $0.012 \mathrm{~T}$
2 $0.120 \mathrm{~T}$
3 $1.200 \mathrm{~T}$
4 $2.10 \mathrm{~T}$
Moving Charges & Magnetism

153392 A current of $1 \mathrm{~A}$ is flowing along positive $\mathrm{x}$-axis through a straight wire of length $0.5 \mathrm{~m}$ placed in a region of a magnetic field given by $B=(2 i$ $+4 j) T$. The magnitude and the direction of the force experienced by the wire respectively are

1 $\sqrt{18} \mathrm{~N}$, along positive $\mathrm{z}$-axis
2 $\sqrt{20} \mathrm{~N}$, along positive $\mathrm{x}$-axis
3 $2 \mathrm{~N}$, along positive $\mathrm{z}$-axis
4 $4 \mathrm{~N}$, along positive $y$-axis
Moving Charges & Magnetism

153393 A coil having $\mathbf{N}$ turns carries a current as shown in the figure. The magnetic field intensity at point $P$ is

1 $\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
2 $\frac{\mu_{0} \mathrm{Ni}}{2 \mathrm{R}}$
3 $\frac{\mu_{0} N i R^{2}}{\left(R^{2}+x^{2}\right)}$
4 zero
Moving Charges & Magnetism

153387 ABCD is a square loop made of a uniform conducting wire. The current enters the loop at $A$ and leaves at $D$. The magnetic field is:

1 zero at all points inside the loop
2 zero at all points outside the loop
3 maximum at the centre of the loop
4 zero only at the centre of the loop
Moving Charges & Magnetism

153388 A conductor of length $5 \mathrm{~cm}$ is moved parallel to itself with a speed of $2 \mathrm{~m} / \mathrm{s}$ perpendicular to uniform magnetic field of $10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$. The induced e.m.f. generated is

1 $2 \times 10^{-3} \mathrm{~V}$
2 $1 \times 10^{-3} \mathrm{~V}$
3 $1 \times 10^{-4} \mathrm{~V}$
4 $2 \times 10^{-4} \mathrm{~V}$
Moving Charges & Magnetism

153391 The magnetic needle has magnetic moment $8.7 \times$ $10^{-2} \mathrm{~A} \mathrm{~m}^{2}$ and moment of inertia $11.5 \times 10^{-6} \mathrm{~kg}$ $\mathrm{m}^{2}$. It performs 10 complete oscillations in $6.70 \mathrm{~s}$, what is the magnitude of the magnetic field?

1 $0.012 \mathrm{~T}$
2 $0.120 \mathrm{~T}$
3 $1.200 \mathrm{~T}$
4 $2.10 \mathrm{~T}$
Moving Charges & Magnetism

153392 A current of $1 \mathrm{~A}$ is flowing along positive $\mathrm{x}$-axis through a straight wire of length $0.5 \mathrm{~m}$ placed in a region of a magnetic field given by $B=(2 i$ $+4 j) T$. The magnitude and the direction of the force experienced by the wire respectively are

1 $\sqrt{18} \mathrm{~N}$, along positive $\mathrm{z}$-axis
2 $\sqrt{20} \mathrm{~N}$, along positive $\mathrm{x}$-axis
3 $2 \mathrm{~N}$, along positive $\mathrm{z}$-axis
4 $4 \mathrm{~N}$, along positive $y$-axis
Moving Charges & Magnetism

153393 A coil having $\mathbf{N}$ turns carries a current as shown in the figure. The magnetic field intensity at point $P$ is

1 $\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
2 $\frac{\mu_{0} \mathrm{Ni}}{2 \mathrm{R}}$
3 $\frac{\mu_{0} N i R^{2}}{\left(R^{2}+x^{2}\right)}$
4 zero
Moving Charges & Magnetism

153387 ABCD is a square loop made of a uniform conducting wire. The current enters the loop at $A$ and leaves at $D$. The magnetic field is:

1 zero at all points inside the loop
2 zero at all points outside the loop
3 maximum at the centre of the loop
4 zero only at the centre of the loop
Moving Charges & Magnetism

153388 A conductor of length $5 \mathrm{~cm}$ is moved parallel to itself with a speed of $2 \mathrm{~m} / \mathrm{s}$ perpendicular to uniform magnetic field of $10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$. The induced e.m.f. generated is

1 $2 \times 10^{-3} \mathrm{~V}$
2 $1 \times 10^{-3} \mathrm{~V}$
3 $1 \times 10^{-4} \mathrm{~V}$
4 $2 \times 10^{-4} \mathrm{~V}$
Moving Charges & Magnetism

153391 The magnetic needle has magnetic moment $8.7 \times$ $10^{-2} \mathrm{~A} \mathrm{~m}^{2}$ and moment of inertia $11.5 \times 10^{-6} \mathrm{~kg}$ $\mathrm{m}^{2}$. It performs 10 complete oscillations in $6.70 \mathrm{~s}$, what is the magnitude of the magnetic field?

1 $0.012 \mathrm{~T}$
2 $0.120 \mathrm{~T}$
3 $1.200 \mathrm{~T}$
4 $2.10 \mathrm{~T}$
Moving Charges & Magnetism

153392 A current of $1 \mathrm{~A}$ is flowing along positive $\mathrm{x}$-axis through a straight wire of length $0.5 \mathrm{~m}$ placed in a region of a magnetic field given by $B=(2 i$ $+4 j) T$. The magnitude and the direction of the force experienced by the wire respectively are

1 $\sqrt{18} \mathrm{~N}$, along positive $\mathrm{z}$-axis
2 $\sqrt{20} \mathrm{~N}$, along positive $\mathrm{x}$-axis
3 $2 \mathrm{~N}$, along positive $\mathrm{z}$-axis
4 $4 \mathrm{~N}$, along positive $y$-axis
Moving Charges & Magnetism

153393 A coil having $\mathbf{N}$ turns carries a current as shown in the figure. The magnetic field intensity at point $P$ is

1 $\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
2 $\frac{\mu_{0} \mathrm{Ni}}{2 \mathrm{R}}$
3 $\frac{\mu_{0} N i R^{2}}{\left(R^{2}+x^{2}\right)}$
4 zero