00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153370 When a positively charged particle enters a uniform magnetic field with uniform velocity, its trajectory can be
1.a straight line 2. a circle 3 . a helix

1 (1) only
2 (1) or (2)
3 (1) or (3)
4 Any one of (1), (2) and (3)
Moving Charges & Magnetism

153378 A square coil of side a carries a current $I$. The magnetic field at the centre of the coil is

1 $\frac{\mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
3 $\frac{\mu_{0} \mathrm{I}}{\sqrt{2} \mathrm{a} \pi}$
4 $\frac{2 \sqrt{2} \mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
Moving Charges & Magnetism

153379 Circular loop of a wire and a long straight wire carry currents $I_{c}$ and $I_{e}$, respectively as shown in figure. Assuming that these are placed in the same plane, the magnetic fields will be zero at the centre of the loop when the separation $H$ is:

1 $\frac{I_{e} R}{I_{c} \pi}$
2 $\frac{I_{c} R}{I_{e} \pi}$
3 $\frac{\pi I_{c}}{I_{e} R}$
4 $\frac{I_{e} \pi}{I_{c} R}$
Moving Charges & Magnetism

153381 Two concentric coils each of radius equal to $2 \pi$ cm are placed at right angles to each other. 3 ampere and 4 ampere are the currents flowing in each coil respectively. The magnetic induction in Weber $/ \mathrm{m}^{2}$ at the centre of the coils will be.
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{A} . \mathrm{m}\right)$

1 $10^{-5}$
2 $12 \times 10^{-5}$
3 $7 \times 10^{-5}$
4 $5 \times 10^{-5}$
Moving Charges & Magnetism

153370 When a positively charged particle enters a uniform magnetic field with uniform velocity, its trajectory can be
1.a straight line 2. a circle 3 . a helix

1 (1) only
2 (1) or (2)
3 (1) or (3)
4 Any one of (1), (2) and (3)
Moving Charges & Magnetism

153378 A square coil of side a carries a current $I$. The magnetic field at the centre of the coil is

1 $\frac{\mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
3 $\frac{\mu_{0} \mathrm{I}}{\sqrt{2} \mathrm{a} \pi}$
4 $\frac{2 \sqrt{2} \mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
Moving Charges & Magnetism

153379 Circular loop of a wire and a long straight wire carry currents $I_{c}$ and $I_{e}$, respectively as shown in figure. Assuming that these are placed in the same plane, the magnetic fields will be zero at the centre of the loop when the separation $H$ is:

1 $\frac{I_{e} R}{I_{c} \pi}$
2 $\frac{I_{c} R}{I_{e} \pi}$
3 $\frac{\pi I_{c}}{I_{e} R}$
4 $\frac{I_{e} \pi}{I_{c} R}$
Moving Charges & Magnetism

153381 Two concentric coils each of radius equal to $2 \pi$ cm are placed at right angles to each other. 3 ampere and 4 ampere are the currents flowing in each coil respectively. The magnetic induction in Weber $/ \mathrm{m}^{2}$ at the centre of the coils will be.
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{A} . \mathrm{m}\right)$

1 $10^{-5}$
2 $12 \times 10^{-5}$
3 $7 \times 10^{-5}$
4 $5 \times 10^{-5}$
Moving Charges & Magnetism

153370 When a positively charged particle enters a uniform magnetic field with uniform velocity, its trajectory can be
1.a straight line 2. a circle 3 . a helix

1 (1) only
2 (1) or (2)
3 (1) or (3)
4 Any one of (1), (2) and (3)
Moving Charges & Magnetism

153378 A square coil of side a carries a current $I$. The magnetic field at the centre of the coil is

1 $\frac{\mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
3 $\frac{\mu_{0} \mathrm{I}}{\sqrt{2} \mathrm{a} \pi}$
4 $\frac{2 \sqrt{2} \mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
Moving Charges & Magnetism

153379 Circular loop of a wire and a long straight wire carry currents $I_{c}$ and $I_{e}$, respectively as shown in figure. Assuming that these are placed in the same plane, the magnetic fields will be zero at the centre of the loop when the separation $H$ is:

1 $\frac{I_{e} R}{I_{c} \pi}$
2 $\frac{I_{c} R}{I_{e} \pi}$
3 $\frac{\pi I_{c}}{I_{e} R}$
4 $\frac{I_{e} \pi}{I_{c} R}$
Moving Charges & Magnetism

153381 Two concentric coils each of radius equal to $2 \pi$ cm are placed at right angles to each other. 3 ampere and 4 ampere are the currents flowing in each coil respectively. The magnetic induction in Weber $/ \mathrm{m}^{2}$ at the centre of the coils will be.
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{A} . \mathrm{m}\right)$

1 $10^{-5}$
2 $12 \times 10^{-5}$
3 $7 \times 10^{-5}$
4 $5 \times 10^{-5}$
Moving Charges & Magnetism

153370 When a positively charged particle enters a uniform magnetic field with uniform velocity, its trajectory can be
1.a straight line 2. a circle 3 . a helix

1 (1) only
2 (1) or (2)
3 (1) or (3)
4 Any one of (1), (2) and (3)
Moving Charges & Magnetism

153378 A square coil of side a carries a current $I$. The magnetic field at the centre of the coil is

1 $\frac{\mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
3 $\frac{\mu_{0} \mathrm{I}}{\sqrt{2} \mathrm{a} \pi}$
4 $\frac{2 \sqrt{2} \mu_{0} \mathrm{I}}{\mathrm{a} \pi}$
Moving Charges & Magnetism

153379 Circular loop of a wire and a long straight wire carry currents $I_{c}$ and $I_{e}$, respectively as shown in figure. Assuming that these are placed in the same plane, the magnetic fields will be zero at the centre of the loop when the separation $H$ is:

1 $\frac{I_{e} R}{I_{c} \pi}$
2 $\frac{I_{c} R}{I_{e} \pi}$
3 $\frac{\pi I_{c}}{I_{e} R}$
4 $\frac{I_{e} \pi}{I_{c} R}$
Moving Charges & Magnetism

153381 Two concentric coils each of radius equal to $2 \pi$ cm are placed at right angles to each other. 3 ampere and 4 ampere are the currents flowing in each coil respectively. The magnetic induction in Weber $/ \mathrm{m}^{2}$ at the centre of the coils will be.
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{A} . \mathrm{m}\right)$

1 $10^{-5}$
2 $12 \times 10^{-5}$
3 $7 \times 10^{-5}$
4 $5 \times 10^{-5}$