00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153240 Two long parallel wires separated by $0.1 \mathrm{~m}$ carry currents of $1 \mathrm{~A}$ and $2 \mathrm{~A}$, respectively in opposite directions. A third current-carrying wire parallel to both of them is placed in the same plane such that it feels no net magnetic force. It is placed at a distance of

1 $0.5 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
2 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
3 $0.1 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
4 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
Moving Charges & Magnetism

153241 The magnetic field at the centre of a current carrying loop of radius $0.1 \mathrm{~m}$ is $5 \sqrt{5}$ times that at a point along its axis. The distance of this point from the centre of the loop is:

1 $0.1 \mathrm{~m}$
2 $0.2 \mathrm{~m}$
3 $0.05 \mathrm{~m}$
4 $0.25 \mathrm{~m}$
Moving Charges & Magnetism

153242 A circular loop of radius $0.0157 \mathrm{~m}$ carries a current of 2.0 Amp. The magnetic field at the centre of the loop is $\left[\mu_{0}=4 \pi \times 10^{-7}\right.$ Weber/amp-m]

1 $1.57 \times 10^{-7} \mathrm{Weber} / \mathrm{m}^{2}$
2 $8.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
3 $2.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
4 $3.14 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153243 A long straight wire of radius $R$ carries a steady current $I_{0}$, uniformly distributed throughout the cross-section of the wire. The magnetic field at a radial distance $r$ from the centre of the wire, in the region $r>R$, is

1 $\frac{\mu_{0} I_{0}}{2 \pi r}$
2 $\frac{\mu_{0} I_{0}}{2 \pi R}$
3 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{R}^{2}}{2 \pi \mathrm{r}}$
4 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{r}^{2}}{2 \pi \mathrm{R}}$
5 $\frac{\mu_{0} I_{0} r^{2}}{2 \pi R^{2}}$
Moving Charges & Magnetism

153245 The magnetic field at the origin due to the current flowing in the wire is -

1 $-\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
2 $\frac{\mu_{0} I}{2 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
3 $\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(-\hat{\mathrm{i}}+\hat{\mathrm{k}})$
4 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a} \sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{k}})$
Moving Charges & Magnetism

153240 Two long parallel wires separated by $0.1 \mathrm{~m}$ carry currents of $1 \mathrm{~A}$ and $2 \mathrm{~A}$, respectively in opposite directions. A third current-carrying wire parallel to both of them is placed in the same plane such that it feels no net magnetic force. It is placed at a distance of

1 $0.5 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
2 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
3 $0.1 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
4 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
Moving Charges & Magnetism

153241 The magnetic field at the centre of a current carrying loop of radius $0.1 \mathrm{~m}$ is $5 \sqrt{5}$ times that at a point along its axis. The distance of this point from the centre of the loop is:

1 $0.1 \mathrm{~m}$
2 $0.2 \mathrm{~m}$
3 $0.05 \mathrm{~m}$
4 $0.25 \mathrm{~m}$
Moving Charges & Magnetism

153242 A circular loop of radius $0.0157 \mathrm{~m}$ carries a current of 2.0 Amp. The magnetic field at the centre of the loop is $\left[\mu_{0}=4 \pi \times 10^{-7}\right.$ Weber/amp-m]

1 $1.57 \times 10^{-7} \mathrm{Weber} / \mathrm{m}^{2}$
2 $8.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
3 $2.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
4 $3.14 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153243 A long straight wire of radius $R$ carries a steady current $I_{0}$, uniformly distributed throughout the cross-section of the wire. The magnetic field at a radial distance $r$ from the centre of the wire, in the region $r>R$, is

1 $\frac{\mu_{0} I_{0}}{2 \pi r}$
2 $\frac{\mu_{0} I_{0}}{2 \pi R}$
3 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{R}^{2}}{2 \pi \mathrm{r}}$
4 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{r}^{2}}{2 \pi \mathrm{R}}$
5 $\frac{\mu_{0} I_{0} r^{2}}{2 \pi R^{2}}$
Moving Charges & Magnetism

153245 The magnetic field at the origin due to the current flowing in the wire is -

1 $-\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
2 $\frac{\mu_{0} I}{2 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
3 $\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(-\hat{\mathrm{i}}+\hat{\mathrm{k}})$
4 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a} \sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{k}})$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153240 Two long parallel wires separated by $0.1 \mathrm{~m}$ carry currents of $1 \mathrm{~A}$ and $2 \mathrm{~A}$, respectively in opposite directions. A third current-carrying wire parallel to both of them is placed in the same plane such that it feels no net magnetic force. It is placed at a distance of

1 $0.5 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
2 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
3 $0.1 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
4 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
Moving Charges & Magnetism

153241 The magnetic field at the centre of a current carrying loop of radius $0.1 \mathrm{~m}$ is $5 \sqrt{5}$ times that at a point along its axis. The distance of this point from the centre of the loop is:

1 $0.1 \mathrm{~m}$
2 $0.2 \mathrm{~m}$
3 $0.05 \mathrm{~m}$
4 $0.25 \mathrm{~m}$
Moving Charges & Magnetism

153242 A circular loop of radius $0.0157 \mathrm{~m}$ carries a current of 2.0 Amp. The magnetic field at the centre of the loop is $\left[\mu_{0}=4 \pi \times 10^{-7}\right.$ Weber/amp-m]

1 $1.57 \times 10^{-7} \mathrm{Weber} / \mathrm{m}^{2}$
2 $8.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
3 $2.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
4 $3.14 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153243 A long straight wire of radius $R$ carries a steady current $I_{0}$, uniformly distributed throughout the cross-section of the wire. The magnetic field at a radial distance $r$ from the centre of the wire, in the region $r>R$, is

1 $\frac{\mu_{0} I_{0}}{2 \pi r}$
2 $\frac{\mu_{0} I_{0}}{2 \pi R}$
3 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{R}^{2}}{2 \pi \mathrm{r}}$
4 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{r}^{2}}{2 \pi \mathrm{R}}$
5 $\frac{\mu_{0} I_{0} r^{2}}{2 \pi R^{2}}$
Moving Charges & Magnetism

153245 The magnetic field at the origin due to the current flowing in the wire is -

1 $-\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
2 $\frac{\mu_{0} I}{2 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
3 $\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(-\hat{\mathrm{i}}+\hat{\mathrm{k}})$
4 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a} \sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{k}})$
Moving Charges & Magnetism

153240 Two long parallel wires separated by $0.1 \mathrm{~m}$ carry currents of $1 \mathrm{~A}$ and $2 \mathrm{~A}$, respectively in opposite directions. A third current-carrying wire parallel to both of them is placed in the same plane such that it feels no net magnetic force. It is placed at a distance of

1 $0.5 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
2 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
3 $0.1 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
4 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
Moving Charges & Magnetism

153241 The magnetic field at the centre of a current carrying loop of radius $0.1 \mathrm{~m}$ is $5 \sqrt{5}$ times that at a point along its axis. The distance of this point from the centre of the loop is:

1 $0.1 \mathrm{~m}$
2 $0.2 \mathrm{~m}$
3 $0.05 \mathrm{~m}$
4 $0.25 \mathrm{~m}$
Moving Charges & Magnetism

153242 A circular loop of radius $0.0157 \mathrm{~m}$ carries a current of 2.0 Amp. The magnetic field at the centre of the loop is $\left[\mu_{0}=4 \pi \times 10^{-7}\right.$ Weber/amp-m]

1 $1.57 \times 10^{-7} \mathrm{Weber} / \mathrm{m}^{2}$
2 $8.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
3 $2.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
4 $3.14 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153243 A long straight wire of radius $R$ carries a steady current $I_{0}$, uniformly distributed throughout the cross-section of the wire. The magnetic field at a radial distance $r$ from the centre of the wire, in the region $r>R$, is

1 $\frac{\mu_{0} I_{0}}{2 \pi r}$
2 $\frac{\mu_{0} I_{0}}{2 \pi R}$
3 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{R}^{2}}{2 \pi \mathrm{r}}$
4 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{r}^{2}}{2 \pi \mathrm{R}}$
5 $\frac{\mu_{0} I_{0} r^{2}}{2 \pi R^{2}}$
Moving Charges & Magnetism

153245 The magnetic field at the origin due to the current flowing in the wire is -

1 $-\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
2 $\frac{\mu_{0} I}{2 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
3 $\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(-\hat{\mathrm{i}}+\hat{\mathrm{k}})$
4 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a} \sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{k}})$
Moving Charges & Magnetism

153240 Two long parallel wires separated by $0.1 \mathrm{~m}$ carry currents of $1 \mathrm{~A}$ and $2 \mathrm{~A}$, respectively in opposite directions. A third current-carrying wire parallel to both of them is placed in the same plane such that it feels no net magnetic force. It is placed at a distance of

1 $0.5 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
2 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, towards the $2^{\text {nd }}$ wire
3 $0.1 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
4 $0.2 \mathrm{~m}$ from the $1^{\text {st }}$ wire, away from the $2^{\text {nd }}$ wire
Moving Charges & Magnetism

153241 The magnetic field at the centre of a current carrying loop of radius $0.1 \mathrm{~m}$ is $5 \sqrt{5}$ times that at a point along its axis. The distance of this point from the centre of the loop is:

1 $0.1 \mathrm{~m}$
2 $0.2 \mathrm{~m}$
3 $0.05 \mathrm{~m}$
4 $0.25 \mathrm{~m}$
Moving Charges & Magnetism

153242 A circular loop of radius $0.0157 \mathrm{~m}$ carries a current of 2.0 Amp. The magnetic field at the centre of the loop is $\left[\mu_{0}=4 \pi \times 10^{-7}\right.$ Weber/amp-m]

1 $1.57 \times 10^{-7} \mathrm{Weber} / \mathrm{m}^{2}$
2 $8.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
3 $2.0 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
4 $3.14 \times 10^{-5} \mathrm{Weber} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153243 A long straight wire of radius $R$ carries a steady current $I_{0}$, uniformly distributed throughout the cross-section of the wire. The magnetic field at a radial distance $r$ from the centre of the wire, in the region $r>R$, is

1 $\frac{\mu_{0} I_{0}}{2 \pi r}$
2 $\frac{\mu_{0} I_{0}}{2 \pi R}$
3 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{R}^{2}}{2 \pi \mathrm{r}}$
4 $\frac{\mu_{0} \mathrm{I}_{0} \mathrm{r}^{2}}{2 \pi \mathrm{R}}$
5 $\frac{\mu_{0} I_{0} r^{2}}{2 \pi R^{2}}$
Moving Charges & Magnetism

153245 The magnetic field at the origin due to the current flowing in the wire is -

1 $-\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
2 $\frac{\mu_{0} I}{2 \pi \mathrm{a}}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
3 $\frac{\mu_{0} \mathrm{I}}{8 \pi \mathrm{a}}(-\hat{\mathrm{i}}+\hat{\mathrm{k}})$
4 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a} \sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{k}})$