07. RC circuit (Charging, Time Constant, Discharging)
Current Electricity

153090 In the network shown below, the charge accumulated in the capacitor in steady state will be :

1 $7.2 \mu \mathrm{C}$
2 $4.8 \mu \mathrm{C}$
3 $10.3 \mu \mathrm{C}$
4 $12 \mu \mathrm{C}$
Current Electricity

153091 What are the values of ' $E$ ' in the following circuit, if a current of 2 A flows in the clockwise as well in anticlockwise direction?

1 $3 \mathrm{~V}, 28 \mathrm{~V}$
2 $38 \mathrm{~V}, 2 \mathrm{~V}$
3 $3 \mathrm{~V}, 30 \mathrm{~V}$
4 $3 \mathrm{~V}, 2.8 \mathrm{~V}$
Current Electricity

153092 An emf of $15 \mathrm{~V}$ is applied to a circuit containing $5 H$ inductance and $10 \Omega$ resistance. The ratio of the currents at time, $t=\infty$ and $t=1$ s is

1 $\frac{\mathrm{e}}{\mathrm{e}^{2}-1}$
2 $\frac{\mathrm{e}^{2}}{\mathrm{e}-1}$
3 $\frac{\mathrm{e}}{1-\mathrm{e}^{2}}$
4 $\frac{\mathrm{e}^{2}}{\mathrm{e}^{2}-1}$
Current Electricity

153093 original image
Initially the switch is closed till the steady state is reached. Now find charge on capacitor after 1 sec of opening the switch.

1 $20 \mathrm{e}^{-10} \mu \mathrm{C}$
2 $25 \mathrm{e}^{-10} \mu \mathrm{C}$
3 $30 \mathrm{e}^{-10} \mu \mathrm{C}$
4 $35 \mathrm{e}^{-10} \mu \mathrm{C}$
Current Electricity

153095 In steady state, charge on $3 \mu \mathrm{F}$ capacitor is

1 $36 \mu \mathrm{C}$
2 $27 \mu \mathrm{C}$
3 $18 \mu \mathrm{C}$
4 $54 \mu \mathrm{C}$
Current Electricity

153090 In the network shown below, the charge accumulated in the capacitor in steady state will be :

1 $7.2 \mu \mathrm{C}$
2 $4.8 \mu \mathrm{C}$
3 $10.3 \mu \mathrm{C}$
4 $12 \mu \mathrm{C}$
Current Electricity

153091 What are the values of ' $E$ ' in the following circuit, if a current of 2 A flows in the clockwise as well in anticlockwise direction?

1 $3 \mathrm{~V}, 28 \mathrm{~V}$
2 $38 \mathrm{~V}, 2 \mathrm{~V}$
3 $3 \mathrm{~V}, 30 \mathrm{~V}$
4 $3 \mathrm{~V}, 2.8 \mathrm{~V}$
Current Electricity

153092 An emf of $15 \mathrm{~V}$ is applied to a circuit containing $5 H$ inductance and $10 \Omega$ resistance. The ratio of the currents at time, $t=\infty$ and $t=1$ s is

1 $\frac{\mathrm{e}}{\mathrm{e}^{2}-1}$
2 $\frac{\mathrm{e}^{2}}{\mathrm{e}-1}$
3 $\frac{\mathrm{e}}{1-\mathrm{e}^{2}}$
4 $\frac{\mathrm{e}^{2}}{\mathrm{e}^{2}-1}$
Current Electricity

153093 original image
Initially the switch is closed till the steady state is reached. Now find charge on capacitor after 1 sec of opening the switch.

1 $20 \mathrm{e}^{-10} \mu \mathrm{C}$
2 $25 \mathrm{e}^{-10} \mu \mathrm{C}$
3 $30 \mathrm{e}^{-10} \mu \mathrm{C}$
4 $35 \mathrm{e}^{-10} \mu \mathrm{C}$
Current Electricity

153095 In steady state, charge on $3 \mu \mathrm{F}$ capacitor is

1 $36 \mu \mathrm{C}$
2 $27 \mu \mathrm{C}$
3 $18 \mu \mathrm{C}$
4 $54 \mu \mathrm{C}$
Current Electricity

153090 In the network shown below, the charge accumulated in the capacitor in steady state will be :

1 $7.2 \mu \mathrm{C}$
2 $4.8 \mu \mathrm{C}$
3 $10.3 \mu \mathrm{C}$
4 $12 \mu \mathrm{C}$
Current Electricity

153091 What are the values of ' $E$ ' in the following circuit, if a current of 2 A flows in the clockwise as well in anticlockwise direction?

1 $3 \mathrm{~V}, 28 \mathrm{~V}$
2 $38 \mathrm{~V}, 2 \mathrm{~V}$
3 $3 \mathrm{~V}, 30 \mathrm{~V}$
4 $3 \mathrm{~V}, 2.8 \mathrm{~V}$
Current Electricity

153092 An emf of $15 \mathrm{~V}$ is applied to a circuit containing $5 H$ inductance and $10 \Omega$ resistance. The ratio of the currents at time, $t=\infty$ and $t=1$ s is

1 $\frac{\mathrm{e}}{\mathrm{e}^{2}-1}$
2 $\frac{\mathrm{e}^{2}}{\mathrm{e}-1}$
3 $\frac{\mathrm{e}}{1-\mathrm{e}^{2}}$
4 $\frac{\mathrm{e}^{2}}{\mathrm{e}^{2}-1}$
Current Electricity

153093 original image
Initially the switch is closed till the steady state is reached. Now find charge on capacitor after 1 sec of opening the switch.

1 $20 \mathrm{e}^{-10} \mu \mathrm{C}$
2 $25 \mathrm{e}^{-10} \mu \mathrm{C}$
3 $30 \mathrm{e}^{-10} \mu \mathrm{C}$
4 $35 \mathrm{e}^{-10} \mu \mathrm{C}$
Current Electricity

153095 In steady state, charge on $3 \mu \mathrm{F}$ capacitor is

1 $36 \mu \mathrm{C}$
2 $27 \mu \mathrm{C}$
3 $18 \mu \mathrm{C}$
4 $54 \mu \mathrm{C}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

153090 In the network shown below, the charge accumulated in the capacitor in steady state will be :

1 $7.2 \mu \mathrm{C}$
2 $4.8 \mu \mathrm{C}$
3 $10.3 \mu \mathrm{C}$
4 $12 \mu \mathrm{C}$
Current Electricity

153091 What are the values of ' $E$ ' in the following circuit, if a current of 2 A flows in the clockwise as well in anticlockwise direction?

1 $3 \mathrm{~V}, 28 \mathrm{~V}$
2 $38 \mathrm{~V}, 2 \mathrm{~V}$
3 $3 \mathrm{~V}, 30 \mathrm{~V}$
4 $3 \mathrm{~V}, 2.8 \mathrm{~V}$
Current Electricity

153092 An emf of $15 \mathrm{~V}$ is applied to a circuit containing $5 H$ inductance and $10 \Omega$ resistance. The ratio of the currents at time, $t=\infty$ and $t=1$ s is

1 $\frac{\mathrm{e}}{\mathrm{e}^{2}-1}$
2 $\frac{\mathrm{e}^{2}}{\mathrm{e}-1}$
3 $\frac{\mathrm{e}}{1-\mathrm{e}^{2}}$
4 $\frac{\mathrm{e}^{2}}{\mathrm{e}^{2}-1}$
Current Electricity

153093 original image
Initially the switch is closed till the steady state is reached. Now find charge on capacitor after 1 sec of opening the switch.

1 $20 \mathrm{e}^{-10} \mu \mathrm{C}$
2 $25 \mathrm{e}^{-10} \mu \mathrm{C}$
3 $30 \mathrm{e}^{-10} \mu \mathrm{C}$
4 $35 \mathrm{e}^{-10} \mu \mathrm{C}$
Current Electricity

153095 In steady state, charge on $3 \mu \mathrm{F}$ capacitor is

1 $36 \mu \mathrm{C}$
2 $27 \mu \mathrm{C}$
3 $18 \mu \mathrm{C}$
4 $54 \mu \mathrm{C}$
Current Electricity

153090 In the network shown below, the charge accumulated in the capacitor in steady state will be :

1 $7.2 \mu \mathrm{C}$
2 $4.8 \mu \mathrm{C}$
3 $10.3 \mu \mathrm{C}$
4 $12 \mu \mathrm{C}$
Current Electricity

153091 What are the values of ' $E$ ' in the following circuit, if a current of 2 A flows in the clockwise as well in anticlockwise direction?

1 $3 \mathrm{~V}, 28 \mathrm{~V}$
2 $38 \mathrm{~V}, 2 \mathrm{~V}$
3 $3 \mathrm{~V}, 30 \mathrm{~V}$
4 $3 \mathrm{~V}, 2.8 \mathrm{~V}$
Current Electricity

153092 An emf of $15 \mathrm{~V}$ is applied to a circuit containing $5 H$ inductance and $10 \Omega$ resistance. The ratio of the currents at time, $t=\infty$ and $t=1$ s is

1 $\frac{\mathrm{e}}{\mathrm{e}^{2}-1}$
2 $\frac{\mathrm{e}^{2}}{\mathrm{e}-1}$
3 $\frac{\mathrm{e}}{1-\mathrm{e}^{2}}$
4 $\frac{\mathrm{e}^{2}}{\mathrm{e}^{2}-1}$
Current Electricity

153093 original image
Initially the switch is closed till the steady state is reached. Now find charge on capacitor after 1 sec of opening the switch.

1 $20 \mathrm{e}^{-10} \mu \mathrm{C}$
2 $25 \mathrm{e}^{-10} \mu \mathrm{C}$
3 $30 \mathrm{e}^{-10} \mu \mathrm{C}$
4 $35 \mathrm{e}^{-10} \mu \mathrm{C}$
Current Electricity

153095 In steady state, charge on $3 \mu \mathrm{F}$ capacitor is

1 $36 \mu \mathrm{C}$
2 $27 \mu \mathrm{C}$
3 $18 \mu \mathrm{C}$
4 $54 \mu \mathrm{C}$