06. Measuring Instrument (Meter Bridge, Galvanometer, Ammeter, Voltmeter, Potentiometer)
Current Electricity

152838 A galvanometer of resistance $100 \Omega$ requires 10 $\mu \mathrm{A}$ current for full scale deflection. Now a resistance of $1 \Omega$ is connected to convert it into an ammeter. The minimum current required to obtain full scale deflection is
1098. Scale of galvanometer divided into 100 equal divisions has a current sensitivity $10 \mathrm{div} . / \mathrm{mA}$ and voltage sensitivity $4 \mathrm{div} . / \mathrm{mV}$. The resistance of galvanometer is

1 $101 \mathrm{~mA}$
2 $11.0 \mathrm{~mA}$
3 $10.1 \mathrm{~mA}$
4 $1.01 \mathrm{~mA}$
Current Electricity

152839 A potentiometer wire has length $4 \mathrm{~m}$ and resistance $5 \Omega$. It is connected in series with 495 $\Omega$ resistance and a cell of e.m.f. $4 \mathrm{~V}$. The potential gradient along the wire is

1 $0.01 \mathrm{~V} / \mathrm{m}$
2 $0.03 \mathrm{~V} / \mathrm{m}$
3 $0.02 \mathrm{~V} / \mathrm{m}$
4 $0.04 \mathrm{~V} / \mathrm{m}$
Current Electricity

152840 A galvanometer has resistance ' $G$ ' and range ' $V$ g'. How much resistance is required to read voltage upto ' $V$ ' volt?

1 $\frac{\mathrm{G}\left(\mathrm{V}-\mathrm{V}_{\mathrm{g}}\right)}{\mathrm{V}}$
2 $\mathrm{GV}_{\mathrm{g}}$
3 $\frac{G\left(V+V_{g}\right)}{V}$
4 $\mathrm{G}\left(\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{g}}}-1\right)$
Current Electricity

152841 In potentiometer experiment, cells of e.m.f. $E_{1}$ and $E_{2}$ are connected in series $\left(E_{1}>E_{2}\right)$, the balancing length is $64 \mathrm{~cm}$ of the wire. If the polarity of $E_{2}$ is reserved, the balancing length becomes $32 \mathrm{~cm}$. The ratio $\frac{E_{1}}{E_{2}}$ is

1 $1: 2$
2 $1: 3$
3 $2: 1$
4 $3: 1$
Current Electricity

152838 A galvanometer of resistance $100 \Omega$ requires 10 $\mu \mathrm{A}$ current for full scale deflection. Now a resistance of $1 \Omega$ is connected to convert it into an ammeter. The minimum current required to obtain full scale deflection is
1098. Scale of galvanometer divided into 100 equal divisions has a current sensitivity $10 \mathrm{div} . / \mathrm{mA}$ and voltage sensitivity $4 \mathrm{div} . / \mathrm{mV}$. The resistance of galvanometer is

1 $101 \mathrm{~mA}$
2 $11.0 \mathrm{~mA}$
3 $10.1 \mathrm{~mA}$
4 $1.01 \mathrm{~mA}$
Current Electricity

152839 A potentiometer wire has length $4 \mathrm{~m}$ and resistance $5 \Omega$. It is connected in series with 495 $\Omega$ resistance and a cell of e.m.f. $4 \mathrm{~V}$. The potential gradient along the wire is

1 $0.01 \mathrm{~V} / \mathrm{m}$
2 $0.03 \mathrm{~V} / \mathrm{m}$
3 $0.02 \mathrm{~V} / \mathrm{m}$
4 $0.04 \mathrm{~V} / \mathrm{m}$
Current Electricity

152840 A galvanometer has resistance ' $G$ ' and range ' $V$ g'. How much resistance is required to read voltage upto ' $V$ ' volt?

1 $\frac{\mathrm{G}\left(\mathrm{V}-\mathrm{V}_{\mathrm{g}}\right)}{\mathrm{V}}$
2 $\mathrm{GV}_{\mathrm{g}}$
3 $\frac{G\left(V+V_{g}\right)}{V}$
4 $\mathrm{G}\left(\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{g}}}-1\right)$
Current Electricity

152841 In potentiometer experiment, cells of e.m.f. $E_{1}$ and $E_{2}$ are connected in series $\left(E_{1}>E_{2}\right)$, the balancing length is $64 \mathrm{~cm}$ of the wire. If the polarity of $E_{2}$ is reserved, the balancing length becomes $32 \mathrm{~cm}$. The ratio $\frac{E_{1}}{E_{2}}$ is

1 $1: 2$
2 $1: 3$
3 $2: 1$
4 $3: 1$
Current Electricity

152838 A galvanometer of resistance $100 \Omega$ requires 10 $\mu \mathrm{A}$ current for full scale deflection. Now a resistance of $1 \Omega$ is connected to convert it into an ammeter. The minimum current required to obtain full scale deflection is
1098. Scale of galvanometer divided into 100 equal divisions has a current sensitivity $10 \mathrm{div} . / \mathrm{mA}$ and voltage sensitivity $4 \mathrm{div} . / \mathrm{mV}$. The resistance of galvanometer is

1 $101 \mathrm{~mA}$
2 $11.0 \mathrm{~mA}$
3 $10.1 \mathrm{~mA}$
4 $1.01 \mathrm{~mA}$
Current Electricity

152839 A potentiometer wire has length $4 \mathrm{~m}$ and resistance $5 \Omega$. It is connected in series with 495 $\Omega$ resistance and a cell of e.m.f. $4 \mathrm{~V}$. The potential gradient along the wire is

1 $0.01 \mathrm{~V} / \mathrm{m}$
2 $0.03 \mathrm{~V} / \mathrm{m}$
3 $0.02 \mathrm{~V} / \mathrm{m}$
4 $0.04 \mathrm{~V} / \mathrm{m}$
Current Electricity

152840 A galvanometer has resistance ' $G$ ' and range ' $V$ g'. How much resistance is required to read voltage upto ' $V$ ' volt?

1 $\frac{\mathrm{G}\left(\mathrm{V}-\mathrm{V}_{\mathrm{g}}\right)}{\mathrm{V}}$
2 $\mathrm{GV}_{\mathrm{g}}$
3 $\frac{G\left(V+V_{g}\right)}{V}$
4 $\mathrm{G}\left(\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{g}}}-1\right)$
Current Electricity

152841 In potentiometer experiment, cells of e.m.f. $E_{1}$ and $E_{2}$ are connected in series $\left(E_{1}>E_{2}\right)$, the balancing length is $64 \mathrm{~cm}$ of the wire. If the polarity of $E_{2}$ is reserved, the balancing length becomes $32 \mathrm{~cm}$. The ratio $\frac{E_{1}}{E_{2}}$ is

1 $1: 2$
2 $1: 3$
3 $2: 1$
4 $3: 1$
Current Electricity

152838 A galvanometer of resistance $100 \Omega$ requires 10 $\mu \mathrm{A}$ current for full scale deflection. Now a resistance of $1 \Omega$ is connected to convert it into an ammeter. The minimum current required to obtain full scale deflection is
1098. Scale of galvanometer divided into 100 equal divisions has a current sensitivity $10 \mathrm{div} . / \mathrm{mA}$ and voltage sensitivity $4 \mathrm{div} . / \mathrm{mV}$. The resistance of galvanometer is

1 $101 \mathrm{~mA}$
2 $11.0 \mathrm{~mA}$
3 $10.1 \mathrm{~mA}$
4 $1.01 \mathrm{~mA}$
Current Electricity

152839 A potentiometer wire has length $4 \mathrm{~m}$ and resistance $5 \Omega$. It is connected in series with 495 $\Omega$ resistance and a cell of e.m.f. $4 \mathrm{~V}$. The potential gradient along the wire is

1 $0.01 \mathrm{~V} / \mathrm{m}$
2 $0.03 \mathrm{~V} / \mathrm{m}$
3 $0.02 \mathrm{~V} / \mathrm{m}$
4 $0.04 \mathrm{~V} / \mathrm{m}$
Current Electricity

152840 A galvanometer has resistance ' $G$ ' and range ' $V$ g'. How much resistance is required to read voltage upto ' $V$ ' volt?

1 $\frac{\mathrm{G}\left(\mathrm{V}-\mathrm{V}_{\mathrm{g}}\right)}{\mathrm{V}}$
2 $\mathrm{GV}_{\mathrm{g}}$
3 $\frac{G\left(V+V_{g}\right)}{V}$
4 $\mathrm{G}\left(\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{g}}}-1\right)$
Current Electricity

152841 In potentiometer experiment, cells of e.m.f. $E_{1}$ and $E_{2}$ are connected in series $\left(E_{1}>E_{2}\right)$, the balancing length is $64 \mathrm{~cm}$ of the wire. If the polarity of $E_{2}$ is reserved, the balancing length becomes $32 \mathrm{~cm}$. The ratio $\frac{E_{1}}{E_{2}}$ is

1 $1: 2$
2 $1: 3$
3 $2: 1$
4 $3: 1$