04. Cells, Internal Resistance and Cell Combination, Thermocouple
Current Electricity

152496 In the circuit shown, find the internal resistance value ' $r$ ' of the ac generator, if the average rate at which energy is dissipated in $R$ is maximum

1 $\mathrm{R}$
2 $\mathrm{R}^{2}$
3 $\sqrt{\mathrm{R}}$
4 $\frac{R}{2}$
Current Electricity

152497 A cell of internal resistance $r$ is connected across an external resistance $n r$. Then the ratio of the terminal voltage to the emf of the cell is

1 $\frac{1}{n}$
2 $\frac{1}{n+1}$
3 $\frac{\mathrm{n}}{\mathrm{n}+1}$
4 $\frac{\mathrm{n}-1}{\mathrm{n}}$
Current Electricity

152498 4 cells each of emf $2 \mathrm{~V}$ and internal resistance of $1 \Omega$ are connected in parallel to a load resistor of $2 \Omega$. Then the current through the load resistor is

1 $2 \mathrm{~A}$
2 $1.5 \mathrm{~A}$
3 $1 \mathrm{~A}$
4 $0.888 \mathrm{~A}$
Current Electricity

152499 Which one of the following equation is the correct. equation for the electrical circuit shown in the figure?

1 $\mathrm{E}_{1}-\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right) \mathrm{R}+\mathrm{i}_{1} \mathrm{r}_{1}=0$
2 $\mathrm{E}_{1}-\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right) \mathrm{R}-\mathrm{i}_{1} \mathrm{r}_{1}=0$
3 $\mathrm{E}_{2}-\mathrm{i}_{2} \mathrm{r}_{2}-\mathrm{E}_{1}-\mathrm{i}_{1} \mathrm{r}_{1}=0$
4 $\mathrm{E}_{2}-\left(\mathrm{i}_{2}+\mathrm{i}_{2}\right) \mathrm{R}+\mathrm{i}_{2} \mathrm{R}_{2}=0$
Current Electricity

152496 In the circuit shown, find the internal resistance value ' $r$ ' of the ac generator, if the average rate at which energy is dissipated in $R$ is maximum

1 $\mathrm{R}$
2 $\mathrm{R}^{2}$
3 $\sqrt{\mathrm{R}}$
4 $\frac{R}{2}$
Current Electricity

152497 A cell of internal resistance $r$ is connected across an external resistance $n r$. Then the ratio of the terminal voltage to the emf of the cell is

1 $\frac{1}{n}$
2 $\frac{1}{n+1}$
3 $\frac{\mathrm{n}}{\mathrm{n}+1}$
4 $\frac{\mathrm{n}-1}{\mathrm{n}}$
Current Electricity

152498 4 cells each of emf $2 \mathrm{~V}$ and internal resistance of $1 \Omega$ are connected in parallel to a load resistor of $2 \Omega$. Then the current through the load resistor is

1 $2 \mathrm{~A}$
2 $1.5 \mathrm{~A}$
3 $1 \mathrm{~A}$
4 $0.888 \mathrm{~A}$
Current Electricity

152499 Which one of the following equation is the correct. equation for the electrical circuit shown in the figure?

1 $\mathrm{E}_{1}-\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right) \mathrm{R}+\mathrm{i}_{1} \mathrm{r}_{1}=0$
2 $\mathrm{E}_{1}-\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right) \mathrm{R}-\mathrm{i}_{1} \mathrm{r}_{1}=0$
3 $\mathrm{E}_{2}-\mathrm{i}_{2} \mathrm{r}_{2}-\mathrm{E}_{1}-\mathrm{i}_{1} \mathrm{r}_{1}=0$
4 $\mathrm{E}_{2}-\left(\mathrm{i}_{2}+\mathrm{i}_{2}\right) \mathrm{R}+\mathrm{i}_{2} \mathrm{R}_{2}=0$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

152496 In the circuit shown, find the internal resistance value ' $r$ ' of the ac generator, if the average rate at which energy is dissipated in $R$ is maximum

1 $\mathrm{R}$
2 $\mathrm{R}^{2}$
3 $\sqrt{\mathrm{R}}$
4 $\frac{R}{2}$
Current Electricity

152497 A cell of internal resistance $r$ is connected across an external resistance $n r$. Then the ratio of the terminal voltage to the emf of the cell is

1 $\frac{1}{n}$
2 $\frac{1}{n+1}$
3 $\frac{\mathrm{n}}{\mathrm{n}+1}$
4 $\frac{\mathrm{n}-1}{\mathrm{n}}$
Current Electricity

152498 4 cells each of emf $2 \mathrm{~V}$ and internal resistance of $1 \Omega$ are connected in parallel to a load resistor of $2 \Omega$. Then the current through the load resistor is

1 $2 \mathrm{~A}$
2 $1.5 \mathrm{~A}$
3 $1 \mathrm{~A}$
4 $0.888 \mathrm{~A}$
Current Electricity

152499 Which one of the following equation is the correct. equation for the electrical circuit shown in the figure?

1 $\mathrm{E}_{1}-\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right) \mathrm{R}+\mathrm{i}_{1} \mathrm{r}_{1}=0$
2 $\mathrm{E}_{1}-\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right) \mathrm{R}-\mathrm{i}_{1} \mathrm{r}_{1}=0$
3 $\mathrm{E}_{2}-\mathrm{i}_{2} \mathrm{r}_{2}-\mathrm{E}_{1}-\mathrm{i}_{1} \mathrm{r}_{1}=0$
4 $\mathrm{E}_{2}-\left(\mathrm{i}_{2}+\mathrm{i}_{2}\right) \mathrm{R}+\mathrm{i}_{2} \mathrm{R}_{2}=0$
Current Electricity

152496 In the circuit shown, find the internal resistance value ' $r$ ' of the ac generator, if the average rate at which energy is dissipated in $R$ is maximum

1 $\mathrm{R}$
2 $\mathrm{R}^{2}$
3 $\sqrt{\mathrm{R}}$
4 $\frac{R}{2}$
Current Electricity

152497 A cell of internal resistance $r$ is connected across an external resistance $n r$. Then the ratio of the terminal voltage to the emf of the cell is

1 $\frac{1}{n}$
2 $\frac{1}{n+1}$
3 $\frac{\mathrm{n}}{\mathrm{n}+1}$
4 $\frac{\mathrm{n}-1}{\mathrm{n}}$
Current Electricity

152498 4 cells each of emf $2 \mathrm{~V}$ and internal resistance of $1 \Omega$ are connected in parallel to a load resistor of $2 \Omega$. Then the current through the load resistor is

1 $2 \mathrm{~A}$
2 $1.5 \mathrm{~A}$
3 $1 \mathrm{~A}$
4 $0.888 \mathrm{~A}$
Current Electricity

152499 Which one of the following equation is the correct. equation for the electrical circuit shown in the figure?

1 $\mathrm{E}_{1}-\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right) \mathrm{R}+\mathrm{i}_{1} \mathrm{r}_{1}=0$
2 $\mathrm{E}_{1}-\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right) \mathrm{R}-\mathrm{i}_{1} \mathrm{r}_{1}=0$
3 $\mathrm{E}_{2}-\mathrm{i}_{2} \mathrm{r}_{2}-\mathrm{E}_{1}-\mathrm{i}_{1} \mathrm{r}_{1}=0$
4 $\mathrm{E}_{2}-\left(\mathrm{i}_{2}+\mathrm{i}_{2}\right) \mathrm{R}+\mathrm{i}_{2} \mathrm{R}_{2}=0$