03. Kirchhoff's Law and Combination of Resistance
Current Electricity

152189 The nearest value of equivalent resistance of the combination of resistances given above is

1 $4.5 \Omega$
2 $5.5 \Omega$
3 $6.5 \Omega$
4 $7.5 \Omega$
Current Electricity

152190 A $10 \mathrm{~m}$ long wire of resistance $20 \Omega$ is connected in series with a battery of e.m.f. 3 volt and a resistance of $10 \Omega$. The potential gradient along the wire in volt/meter is

1 0.10
2 0.20
3 0.02
4 1.2
Current Electricity

152192 Using Kirchhoff's law, find the current flowing through the given circuit.

1 $3 \mathrm{~A}$
2 $7.5 \mathrm{~A}$
3 $5 \mathrm{~A}$
4 $10 \mathrm{~A}$
Current Electricity

152193 In the following network, $I_{1}=-0.4 \mathrm{~A}, I_{4}=1 \mathrm{~A}$ and $I_{5}=0.4$ A. The values of $I_{2}, I_{3}$ and $I_{6}$ respectively are

1 $-0.6 \mathrm{~A}, 1.4 \mathrm{~A}, 0.4 \mathrm{~A}$
2 $1.4 \mathrm{~A},-0.6 \mathrm{~A}, 0.4 \mathrm{~A}$
3 $1.4 \mathrm{~A}, 0.4 / \mathrm{A},-0.6 \mathrm{~A}$
4 $0.4 \mathrm{~A},-0.6 \mathrm{~A}, 1.4 \mathrm{~A}$
Current Electricity

152189 The nearest value of equivalent resistance of the combination of resistances given above is

1 $4.5 \Omega$
2 $5.5 \Omega$
3 $6.5 \Omega$
4 $7.5 \Omega$
Current Electricity

152190 A $10 \mathrm{~m}$ long wire of resistance $20 \Omega$ is connected in series with a battery of e.m.f. 3 volt and a resistance of $10 \Omega$. The potential gradient along the wire in volt/meter is

1 0.10
2 0.20
3 0.02
4 1.2
Current Electricity

152192 Using Kirchhoff's law, find the current flowing through the given circuit.

1 $3 \mathrm{~A}$
2 $7.5 \mathrm{~A}$
3 $5 \mathrm{~A}$
4 $10 \mathrm{~A}$
Current Electricity

152193 In the following network, $I_{1}=-0.4 \mathrm{~A}, I_{4}=1 \mathrm{~A}$ and $I_{5}=0.4$ A. The values of $I_{2}, I_{3}$ and $I_{6}$ respectively are

1 $-0.6 \mathrm{~A}, 1.4 \mathrm{~A}, 0.4 \mathrm{~A}$
2 $1.4 \mathrm{~A},-0.6 \mathrm{~A}, 0.4 \mathrm{~A}$
3 $1.4 \mathrm{~A}, 0.4 / \mathrm{A},-0.6 \mathrm{~A}$
4 $0.4 \mathrm{~A},-0.6 \mathrm{~A}, 1.4 \mathrm{~A}$
Current Electricity

152189 The nearest value of equivalent resistance of the combination of resistances given above is

1 $4.5 \Omega$
2 $5.5 \Omega$
3 $6.5 \Omega$
4 $7.5 \Omega$
Current Electricity

152190 A $10 \mathrm{~m}$ long wire of resistance $20 \Omega$ is connected in series with a battery of e.m.f. 3 volt and a resistance of $10 \Omega$. The potential gradient along the wire in volt/meter is

1 0.10
2 0.20
3 0.02
4 1.2
Current Electricity

152192 Using Kirchhoff's law, find the current flowing through the given circuit.

1 $3 \mathrm{~A}$
2 $7.5 \mathrm{~A}$
3 $5 \mathrm{~A}$
4 $10 \mathrm{~A}$
Current Electricity

152193 In the following network, $I_{1}=-0.4 \mathrm{~A}, I_{4}=1 \mathrm{~A}$ and $I_{5}=0.4$ A. The values of $I_{2}, I_{3}$ and $I_{6}$ respectively are

1 $-0.6 \mathrm{~A}, 1.4 \mathrm{~A}, 0.4 \mathrm{~A}$
2 $1.4 \mathrm{~A},-0.6 \mathrm{~A}, 0.4 \mathrm{~A}$
3 $1.4 \mathrm{~A}, 0.4 / \mathrm{A},-0.6 \mathrm{~A}$
4 $0.4 \mathrm{~A},-0.6 \mathrm{~A}, 1.4 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

152189 The nearest value of equivalent resistance of the combination of resistances given above is

1 $4.5 \Omega$
2 $5.5 \Omega$
3 $6.5 \Omega$
4 $7.5 \Omega$
Current Electricity

152190 A $10 \mathrm{~m}$ long wire of resistance $20 \Omega$ is connected in series with a battery of e.m.f. 3 volt and a resistance of $10 \Omega$. The potential gradient along the wire in volt/meter is

1 0.10
2 0.20
3 0.02
4 1.2
Current Electricity

152192 Using Kirchhoff's law, find the current flowing through the given circuit.

1 $3 \mathrm{~A}$
2 $7.5 \mathrm{~A}$
3 $5 \mathrm{~A}$
4 $10 \mathrm{~A}$
Current Electricity

152193 In the following network, $I_{1}=-0.4 \mathrm{~A}, I_{4}=1 \mathrm{~A}$ and $I_{5}=0.4$ A. The values of $I_{2}, I_{3}$ and $I_{6}$ respectively are

1 $-0.6 \mathrm{~A}, 1.4 \mathrm{~A}, 0.4 \mathrm{~A}$
2 $1.4 \mathrm{~A},-0.6 \mathrm{~A}, 0.4 \mathrm{~A}$
3 $1.4 \mathrm{~A}, 0.4 / \mathrm{A},-0.6 \mathrm{~A}$
4 $0.4 \mathrm{~A},-0.6 \mathrm{~A}, 1.4 \mathrm{~A}$