03. Kirchhoff's Law and Combination of Resistance
Current Electricity

152176 Figure shows a part of an electric circuit. The potentials at points $a, b$ and $c$ are $30 \mathrm{~V}, 12 \mathrm{~V}$ and $2 \mathrm{~V}$ respectively. The current through the $20 \Omega$ resistor will be.

1 $0.4 \mathrm{~A}$
2 $0.2 \mathrm{~A}$
3 $0.6 \mathrm{~A}$
4 $1.0 \mathrm{~A}$
Current Electricity

152177 The equivalent resistance between $A$ and $B$ of the network shown in figure:

1 $11 \frac{2}{3} \mathrm{R}$
2 $14 \mathrm{R}$
3 $\frac{8}{3} \mathrm{R}$
4 $21 \mathrm{R}$
Current Electricity

152178 As shown in the figure, a network of resistors is connected to battery of $24 \mathrm{~V}$ with an internal resistance of $3 \Omega$. The current through the resistors $R_{4}$ and $R_{5}$ are $I_{4}$ and $I_{5}$ respectively. The values of $I_{4}$ and $I_{5}$ are:

1 $\mathrm{I}_{4}=\frac{8}{5}$ A and $\mathrm{I}_{5}=\frac{2}{5} \mathrm{~A}$
2 $\mathrm{I}_{4}=\frac{6}{5}$ A and $\mathrm{I}_{5}=\frac{24}{5} \mathrm{~A}$
3 $\mathrm{I}_{4}=\frac{2}{5}$ A and $_{5}=\frac{8}{5} \mathrm{~A}$
4 $\mathrm{I}_{4}=\frac{24}{5} \mathrm{~A}^{\text {and } \mathrm{I}_{5}}=\frac{6}{5} \mathrm{~A}$
Current Electricity

152179 The equivalent resistance between $A$ and B

1 $\frac{2}{3} \Omega$
2 $\frac{3}{2} \Omega$
3 $\frac{1}{3} \Omega$
4 $\frac{1}{2} \Omega$
Current Electricity

152176 Figure shows a part of an electric circuit. The potentials at points $a, b$ and $c$ are $30 \mathrm{~V}, 12 \mathrm{~V}$ and $2 \mathrm{~V}$ respectively. The current through the $20 \Omega$ resistor will be.

1 $0.4 \mathrm{~A}$
2 $0.2 \mathrm{~A}$
3 $0.6 \mathrm{~A}$
4 $1.0 \mathrm{~A}$
Current Electricity

152177 The equivalent resistance between $A$ and $B$ of the network shown in figure:

1 $11 \frac{2}{3} \mathrm{R}$
2 $14 \mathrm{R}$
3 $\frac{8}{3} \mathrm{R}$
4 $21 \mathrm{R}$
Current Electricity

152178 As shown in the figure, a network of resistors is connected to battery of $24 \mathrm{~V}$ with an internal resistance of $3 \Omega$. The current through the resistors $R_{4}$ and $R_{5}$ are $I_{4}$ and $I_{5}$ respectively. The values of $I_{4}$ and $I_{5}$ are:

1 $\mathrm{I}_{4}=\frac{8}{5}$ A and $\mathrm{I}_{5}=\frac{2}{5} \mathrm{~A}$
2 $\mathrm{I}_{4}=\frac{6}{5}$ A and $\mathrm{I}_{5}=\frac{24}{5} \mathrm{~A}$
3 $\mathrm{I}_{4}=\frac{2}{5}$ A and $_{5}=\frac{8}{5} \mathrm{~A}$
4 $\mathrm{I}_{4}=\frac{24}{5} \mathrm{~A}^{\text {and } \mathrm{I}_{5}}=\frac{6}{5} \mathrm{~A}$
Current Electricity

152179 The equivalent resistance between $A$ and B

1 $\frac{2}{3} \Omega$
2 $\frac{3}{2} \Omega$
3 $\frac{1}{3} \Omega$
4 $\frac{1}{2} \Omega$
Current Electricity

152176 Figure shows a part of an electric circuit. The potentials at points $a, b$ and $c$ are $30 \mathrm{~V}, 12 \mathrm{~V}$ and $2 \mathrm{~V}$ respectively. The current through the $20 \Omega$ resistor will be.

1 $0.4 \mathrm{~A}$
2 $0.2 \mathrm{~A}$
3 $0.6 \mathrm{~A}$
4 $1.0 \mathrm{~A}$
Current Electricity

152177 The equivalent resistance between $A$ and $B$ of the network shown in figure:

1 $11 \frac{2}{3} \mathrm{R}$
2 $14 \mathrm{R}$
3 $\frac{8}{3} \mathrm{R}$
4 $21 \mathrm{R}$
Current Electricity

152178 As shown in the figure, a network of resistors is connected to battery of $24 \mathrm{~V}$ with an internal resistance of $3 \Omega$. The current through the resistors $R_{4}$ and $R_{5}$ are $I_{4}$ and $I_{5}$ respectively. The values of $I_{4}$ and $I_{5}$ are:

1 $\mathrm{I}_{4}=\frac{8}{5}$ A and $\mathrm{I}_{5}=\frac{2}{5} \mathrm{~A}$
2 $\mathrm{I}_{4}=\frac{6}{5}$ A and $\mathrm{I}_{5}=\frac{24}{5} \mathrm{~A}$
3 $\mathrm{I}_{4}=\frac{2}{5}$ A and $_{5}=\frac{8}{5} \mathrm{~A}$
4 $\mathrm{I}_{4}=\frac{24}{5} \mathrm{~A}^{\text {and } \mathrm{I}_{5}}=\frac{6}{5} \mathrm{~A}$
Current Electricity

152179 The equivalent resistance between $A$ and B

1 $\frac{2}{3} \Omega$
2 $\frac{3}{2} \Omega$
3 $\frac{1}{3} \Omega$
4 $\frac{1}{2} \Omega$
Current Electricity

152176 Figure shows a part of an electric circuit. The potentials at points $a, b$ and $c$ are $30 \mathrm{~V}, 12 \mathrm{~V}$ and $2 \mathrm{~V}$ respectively. The current through the $20 \Omega$ resistor will be.

1 $0.4 \mathrm{~A}$
2 $0.2 \mathrm{~A}$
3 $0.6 \mathrm{~A}$
4 $1.0 \mathrm{~A}$
Current Electricity

152177 The equivalent resistance between $A$ and $B$ of the network shown in figure:

1 $11 \frac{2}{3} \mathrm{R}$
2 $14 \mathrm{R}$
3 $\frac{8}{3} \mathrm{R}$
4 $21 \mathrm{R}$
Current Electricity

152178 As shown in the figure, a network of resistors is connected to battery of $24 \mathrm{~V}$ with an internal resistance of $3 \Omega$. The current through the resistors $R_{4}$ and $R_{5}$ are $I_{4}$ and $I_{5}$ respectively. The values of $I_{4}$ and $I_{5}$ are:

1 $\mathrm{I}_{4}=\frac{8}{5}$ A and $\mathrm{I}_{5}=\frac{2}{5} \mathrm{~A}$
2 $\mathrm{I}_{4}=\frac{6}{5}$ A and $\mathrm{I}_{5}=\frac{24}{5} \mathrm{~A}$
3 $\mathrm{I}_{4}=\frac{2}{5}$ A and $_{5}=\frac{8}{5} \mathrm{~A}$
4 $\mathrm{I}_{4}=\frac{24}{5} \mathrm{~A}^{\text {and } \mathrm{I}_{5}}=\frac{6}{5} \mathrm{~A}$
Current Electricity

152179 The equivalent resistance between $A$ and B

1 $\frac{2}{3} \Omega$
2 $\frac{3}{2} \Omega$
3 $\frac{1}{3} \Omega$
4 $\frac{1}{2} \Omega$