02. Resistivity
Current Electricity

152166 Two wires of equal diameters of resistivities $\rho_{1}$ and $\rho_{2}$ and lengths $x_{1}$ and $x_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}+x_{2}}$
2 $\frac{\rho_{1} x_{2}-\rho_{2} x_{1}}{x_{1}-x_{2}}$
3 $\frac{\rho_{1} x_{2}+\rho_{2} x_{1}}{x_{1}+x_{2}}$
4 $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}-x_{2}}$
Current Electricity

152167 A nichrome wire $50 \mathrm{~cm}$ long and $1 \mathrm{~mm}^{2}$ crosssection carries a current of 4 A. When connected to $2 \mathrm{~V}$ battery. The resistivity of nichrome wire in $\Omega-m$ is

1 $1 \times 10^{-6}$
2 $4 \times 10^{-7}$
3 $3 \times 10^{-7}$
4 $2 \times 10^{-7}$
Current Electricity

152168 n conducting wires of same dimensions but having resistivities $1,2,3$, connected in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
2 $\frac{\mathrm{n}+1}{2}$
3 $\frac{\mathrm{n}+1}{2 \mathrm{n}}$
4 $\frac{2 \mathrm{n}}{\mathrm{n}+1}$
Current Electricity

152169 An aluminum (resistivity $\rho=2.2 \times 10^{-8} \Omega-\mathrm{m}$ ) wire of a diameter $1.4 \mathrm{~mm}$ is used to make a $4 \Omega$ resistor. The length of the wire is

1 $220 \mathrm{~m}$
2 $1000 \mathrm{~m}$
3 $280 \mathrm{~m}$
4 $1 \mathrm{~m}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

152166 Two wires of equal diameters of resistivities $\rho_{1}$ and $\rho_{2}$ and lengths $x_{1}$ and $x_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}+x_{2}}$
2 $\frac{\rho_{1} x_{2}-\rho_{2} x_{1}}{x_{1}-x_{2}}$
3 $\frac{\rho_{1} x_{2}+\rho_{2} x_{1}}{x_{1}+x_{2}}$
4 $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}-x_{2}}$
Current Electricity

152167 A nichrome wire $50 \mathrm{~cm}$ long and $1 \mathrm{~mm}^{2}$ crosssection carries a current of 4 A. When connected to $2 \mathrm{~V}$ battery. The resistivity of nichrome wire in $\Omega-m$ is

1 $1 \times 10^{-6}$
2 $4 \times 10^{-7}$
3 $3 \times 10^{-7}$
4 $2 \times 10^{-7}$
Current Electricity

152168 n conducting wires of same dimensions but having resistivities $1,2,3$, connected in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
2 $\frac{\mathrm{n}+1}{2}$
3 $\frac{\mathrm{n}+1}{2 \mathrm{n}}$
4 $\frac{2 \mathrm{n}}{\mathrm{n}+1}$
Current Electricity

152169 An aluminum (resistivity $\rho=2.2 \times 10^{-8} \Omega-\mathrm{m}$ ) wire of a diameter $1.4 \mathrm{~mm}$ is used to make a $4 \Omega$ resistor. The length of the wire is

1 $220 \mathrm{~m}$
2 $1000 \mathrm{~m}$
3 $280 \mathrm{~m}$
4 $1 \mathrm{~m}$
Current Electricity

152166 Two wires of equal diameters of resistivities $\rho_{1}$ and $\rho_{2}$ and lengths $x_{1}$ and $x_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}+x_{2}}$
2 $\frac{\rho_{1} x_{2}-\rho_{2} x_{1}}{x_{1}-x_{2}}$
3 $\frac{\rho_{1} x_{2}+\rho_{2} x_{1}}{x_{1}+x_{2}}$
4 $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}-x_{2}}$
Current Electricity

152167 A nichrome wire $50 \mathrm{~cm}$ long and $1 \mathrm{~mm}^{2}$ crosssection carries a current of 4 A. When connected to $2 \mathrm{~V}$ battery. The resistivity of nichrome wire in $\Omega-m$ is

1 $1 \times 10^{-6}$
2 $4 \times 10^{-7}$
3 $3 \times 10^{-7}$
4 $2 \times 10^{-7}$
Current Electricity

152168 n conducting wires of same dimensions but having resistivities $1,2,3$, connected in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
2 $\frac{\mathrm{n}+1}{2}$
3 $\frac{\mathrm{n}+1}{2 \mathrm{n}}$
4 $\frac{2 \mathrm{n}}{\mathrm{n}+1}$
Current Electricity

152169 An aluminum (resistivity $\rho=2.2 \times 10^{-8} \Omega-\mathrm{m}$ ) wire of a diameter $1.4 \mathrm{~mm}$ is used to make a $4 \Omega$ resistor. The length of the wire is

1 $220 \mathrm{~m}$
2 $1000 \mathrm{~m}$
3 $280 \mathrm{~m}$
4 $1 \mathrm{~m}$
Current Electricity

152166 Two wires of equal diameters of resistivities $\rho_{1}$ and $\rho_{2}$ and lengths $x_{1}$ and $x_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}+x_{2}}$
2 $\frac{\rho_{1} x_{2}-\rho_{2} x_{1}}{x_{1}-x_{2}}$
3 $\frac{\rho_{1} x_{2}+\rho_{2} x_{1}}{x_{1}+x_{2}}$
4 $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}-x_{2}}$
Current Electricity

152167 A nichrome wire $50 \mathrm{~cm}$ long and $1 \mathrm{~mm}^{2}$ crosssection carries a current of 4 A. When connected to $2 \mathrm{~V}$ battery. The resistivity of nichrome wire in $\Omega-m$ is

1 $1 \times 10^{-6}$
2 $4 \times 10^{-7}$
3 $3 \times 10^{-7}$
4 $2 \times 10^{-7}$
Current Electricity

152168 n conducting wires of same dimensions but having resistivities $1,2,3$, connected in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
2 $\frac{\mathrm{n}+1}{2}$
3 $\frac{\mathrm{n}+1}{2 \mathrm{n}}$
4 $\frac{2 \mathrm{n}}{\mathrm{n}+1}$
Current Electricity

152169 An aluminum (resistivity $\rho=2.2 \times 10^{-8} \Omega-\mathrm{m}$ ) wire of a diameter $1.4 \mathrm{~mm}$ is used to make a $4 \Omega$ resistor. The length of the wire is

1 $220 \mathrm{~m}$
2 $1000 \mathrm{~m}$
3 $280 \mathrm{~m}$
4 $1 \mathrm{~m}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here