00. Electric Current, Current Density and Drift Velocity
Current Electricity

151739 A cylindrical wire $P$ has resistance $10 \Omega$. A second wire $Q$ has length and diameter half that of $P$. If the material of both the wires is same, then resistance of wire $Q$ is

1 $10 \Omega$
2 $20 \Omega$
3 $5 \Omega$
4 $\frac{5}{2} \Omega$
Current Electricity

151740 A conducting wire of cross-sectional area $1 \mathrm{~cm}^{2}$ has $3 \times 10^{23}$ charge carriers per $\mathrm{m}^{3}$. If wire carries a current of $24 \mathrm{~mA}$, then drift velocity of carriers is

1 $5 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
2 $0.5 \mathrm{~m} / \mathrm{s}$
3 $5 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $5 \times 10^{-6} \mathrm{~m} / \mathrm{s}$
Current Electricity

151741 If resistivity of copper is $1.72 \times 10^{-8} \Omega-\mathrm{m}$ and number of free electrons in copper is $8.5 \times 10^{28} / \mathrm{m}^{3}$. Find the mobility.

1 $4.25 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
2 $6.8 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
3 $8.5 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
4 $3.4 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
Current Electricity

151742 Find the current in the $8 \Omega$ resistance in the given circuit.

1 $2 \mathrm{~A}$
2 $3 \mathrm{~A}$
3 $4 \mathrm{~A}$
4 $5 \mathrm{~A}$
Current Electricity

151739 A cylindrical wire $P$ has resistance $10 \Omega$. A second wire $Q$ has length and diameter half that of $P$. If the material of both the wires is same, then resistance of wire $Q$ is

1 $10 \Omega$
2 $20 \Omega$
3 $5 \Omega$
4 $\frac{5}{2} \Omega$
Current Electricity

151740 A conducting wire of cross-sectional area $1 \mathrm{~cm}^{2}$ has $3 \times 10^{23}$ charge carriers per $\mathrm{m}^{3}$. If wire carries a current of $24 \mathrm{~mA}$, then drift velocity of carriers is

1 $5 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
2 $0.5 \mathrm{~m} / \mathrm{s}$
3 $5 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $5 \times 10^{-6} \mathrm{~m} / \mathrm{s}$
Current Electricity

151741 If resistivity of copper is $1.72 \times 10^{-8} \Omega-\mathrm{m}$ and number of free electrons in copper is $8.5 \times 10^{28} / \mathrm{m}^{3}$. Find the mobility.

1 $4.25 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
2 $6.8 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
3 $8.5 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
4 $3.4 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
Current Electricity

151742 Find the current in the $8 \Omega$ resistance in the given circuit.

1 $2 \mathrm{~A}$
2 $3 \mathrm{~A}$
3 $4 \mathrm{~A}$
4 $5 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

151739 A cylindrical wire $P$ has resistance $10 \Omega$. A second wire $Q$ has length and diameter half that of $P$. If the material of both the wires is same, then resistance of wire $Q$ is

1 $10 \Omega$
2 $20 \Omega$
3 $5 \Omega$
4 $\frac{5}{2} \Omega$
Current Electricity

151740 A conducting wire of cross-sectional area $1 \mathrm{~cm}^{2}$ has $3 \times 10^{23}$ charge carriers per $\mathrm{m}^{3}$. If wire carries a current of $24 \mathrm{~mA}$, then drift velocity of carriers is

1 $5 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
2 $0.5 \mathrm{~m} / \mathrm{s}$
3 $5 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $5 \times 10^{-6} \mathrm{~m} / \mathrm{s}$
Current Electricity

151741 If resistivity of copper is $1.72 \times 10^{-8} \Omega-\mathrm{m}$ and number of free electrons in copper is $8.5 \times 10^{28} / \mathrm{m}^{3}$. Find the mobility.

1 $4.25 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
2 $6.8 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
3 $8.5 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
4 $3.4 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
Current Electricity

151742 Find the current in the $8 \Omega$ resistance in the given circuit.

1 $2 \mathrm{~A}$
2 $3 \mathrm{~A}$
3 $4 \mathrm{~A}$
4 $5 \mathrm{~A}$
Current Electricity

151739 A cylindrical wire $P$ has resistance $10 \Omega$. A second wire $Q$ has length and diameter half that of $P$. If the material of both the wires is same, then resistance of wire $Q$ is

1 $10 \Omega$
2 $20 \Omega$
3 $5 \Omega$
4 $\frac{5}{2} \Omega$
Current Electricity

151740 A conducting wire of cross-sectional area $1 \mathrm{~cm}^{2}$ has $3 \times 10^{23}$ charge carriers per $\mathrm{m}^{3}$. If wire carries a current of $24 \mathrm{~mA}$, then drift velocity of carriers is

1 $5 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
2 $0.5 \mathrm{~m} / \mathrm{s}$
3 $5 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $5 \times 10^{-6} \mathrm{~m} / \mathrm{s}$
Current Electricity

151741 If resistivity of copper is $1.72 \times 10^{-8} \Omega-\mathrm{m}$ and number of free electrons in copper is $8.5 \times 10^{28} / \mathrm{m}^{3}$. Find the mobility.

1 $4.25 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
2 $6.8 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
3 $8.5 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
4 $3.4 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{C} \Omega$
Current Electricity

151742 Find the current in the $8 \Omega$ resistance in the given circuit.

1 $2 \mathrm{~A}$
2 $3 \mathrm{~A}$
3 $4 \mathrm{~A}$
4 $5 \mathrm{~A}$