00. Electric Current, Current Density and Drift Velocity
Current Electricity

151781 If the current flowing through a $\mathrm{Cu}$ wire of $\mathbf{1}$ $\mathrm{mm}$ diameter is $1.1 \mathrm{amp}$. The drift velocity of electrons is

1 $0.1 \mathrm{~mm} / \mathrm{s}$
2 $0.2 \mathrm{~mm} / \mathrm{s}$
3 $0.3 \mathrm{~mm} / \mathrm{s}$
4 $0.5 \mathrm{~mm} / \mathrm{s}$
(Given that density of $\mathrm{Cu}=9 \mathrm{~g} / \mathrm{cm}^{3}$ and atomic weight of $\mathrm{Cu}=63$ and that one free electron is contributed by each atom)
Current Electricity

151784 The relaxation time $(\tau)$ for a free electron metal is

1 $\frac{\mathrm{m} l}{\mathrm{ne}^{2} \mathrm{AR}}$
2 $\frac{\mathrm{m}}{\mathrm{ne}^{2}}$
3 $\frac{\mathrm{me}^{2}}{l \mathrm{~A}}$
4 $\frac{\mathrm{Ane}^{2} \mathrm{R}}{\mathrm{m} l}$
Current Electricity

151785 A steady current flows in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor?

1 Electric field
2 Drift velocity
3 Current
4 Current density
Current Electricity

151786 Two cells $A$ and $B$ of emf $2 \mathrm{~V}$ and $1.5 \mathrm{~V}$ respectively, are connected as shown in figure through an external resistance $10 \Omega$. The internal resistance of each cell is $5 \Omega$. The potential difference $E_{A}$ and $E_{B}$ across the terminals of the cells $A$ and $B$ respectively

1 $\mathrm{E}_{\mathrm{A}}=2.0 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.5 \mathrm{~V}$
2 $\mathrm{E}_{\mathrm{A}}=2.125 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.375 \mathrm{~V}$
3 $\mathrm{E}_{\mathrm{A}}=1.875 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.625 \mathrm{~V}$
4 $\mathrm{E}_{\mathrm{A}}=1.875 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.375 \mathrm{~V}$
Current Electricity

151781 If the current flowing through a $\mathrm{Cu}$ wire of $\mathbf{1}$ $\mathrm{mm}$ diameter is $1.1 \mathrm{amp}$. The drift velocity of electrons is

1 $0.1 \mathrm{~mm} / \mathrm{s}$
2 $0.2 \mathrm{~mm} / \mathrm{s}$
3 $0.3 \mathrm{~mm} / \mathrm{s}$
4 $0.5 \mathrm{~mm} / \mathrm{s}$
(Given that density of $\mathrm{Cu}=9 \mathrm{~g} / \mathrm{cm}^{3}$ and atomic weight of $\mathrm{Cu}=63$ and that one free electron is contributed by each atom)
Current Electricity

151784 The relaxation time $(\tau)$ for a free electron metal is

1 $\frac{\mathrm{m} l}{\mathrm{ne}^{2} \mathrm{AR}}$
2 $\frac{\mathrm{m}}{\mathrm{ne}^{2}}$
3 $\frac{\mathrm{me}^{2}}{l \mathrm{~A}}$
4 $\frac{\mathrm{Ane}^{2} \mathrm{R}}{\mathrm{m} l}$
Current Electricity

151785 A steady current flows in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor?

1 Electric field
2 Drift velocity
3 Current
4 Current density
Current Electricity

151786 Two cells $A$ and $B$ of emf $2 \mathrm{~V}$ and $1.5 \mathrm{~V}$ respectively, are connected as shown in figure through an external resistance $10 \Omega$. The internal resistance of each cell is $5 \Omega$. The potential difference $E_{A}$ and $E_{B}$ across the terminals of the cells $A$ and $B$ respectively

1 $\mathrm{E}_{\mathrm{A}}=2.0 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.5 \mathrm{~V}$
2 $\mathrm{E}_{\mathrm{A}}=2.125 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.375 \mathrm{~V}$
3 $\mathrm{E}_{\mathrm{A}}=1.875 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.625 \mathrm{~V}$
4 $\mathrm{E}_{\mathrm{A}}=1.875 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.375 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

151781 If the current flowing through a $\mathrm{Cu}$ wire of $\mathbf{1}$ $\mathrm{mm}$ diameter is $1.1 \mathrm{amp}$. The drift velocity of electrons is

1 $0.1 \mathrm{~mm} / \mathrm{s}$
2 $0.2 \mathrm{~mm} / \mathrm{s}$
3 $0.3 \mathrm{~mm} / \mathrm{s}$
4 $0.5 \mathrm{~mm} / \mathrm{s}$
(Given that density of $\mathrm{Cu}=9 \mathrm{~g} / \mathrm{cm}^{3}$ and atomic weight of $\mathrm{Cu}=63$ and that one free electron is contributed by each atom)
Current Electricity

151784 The relaxation time $(\tau)$ for a free electron metal is

1 $\frac{\mathrm{m} l}{\mathrm{ne}^{2} \mathrm{AR}}$
2 $\frac{\mathrm{m}}{\mathrm{ne}^{2}}$
3 $\frac{\mathrm{me}^{2}}{l \mathrm{~A}}$
4 $\frac{\mathrm{Ane}^{2} \mathrm{R}}{\mathrm{m} l}$
Current Electricity

151785 A steady current flows in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor?

1 Electric field
2 Drift velocity
3 Current
4 Current density
Current Electricity

151786 Two cells $A$ and $B$ of emf $2 \mathrm{~V}$ and $1.5 \mathrm{~V}$ respectively, are connected as shown in figure through an external resistance $10 \Omega$. The internal resistance of each cell is $5 \Omega$. The potential difference $E_{A}$ and $E_{B}$ across the terminals of the cells $A$ and $B$ respectively

1 $\mathrm{E}_{\mathrm{A}}=2.0 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.5 \mathrm{~V}$
2 $\mathrm{E}_{\mathrm{A}}=2.125 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.375 \mathrm{~V}$
3 $\mathrm{E}_{\mathrm{A}}=1.875 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.625 \mathrm{~V}$
4 $\mathrm{E}_{\mathrm{A}}=1.875 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.375 \mathrm{~V}$
Current Electricity

151781 If the current flowing through a $\mathrm{Cu}$ wire of $\mathbf{1}$ $\mathrm{mm}$ diameter is $1.1 \mathrm{amp}$. The drift velocity of electrons is

1 $0.1 \mathrm{~mm} / \mathrm{s}$
2 $0.2 \mathrm{~mm} / \mathrm{s}$
3 $0.3 \mathrm{~mm} / \mathrm{s}$
4 $0.5 \mathrm{~mm} / \mathrm{s}$
(Given that density of $\mathrm{Cu}=9 \mathrm{~g} / \mathrm{cm}^{3}$ and atomic weight of $\mathrm{Cu}=63$ and that one free electron is contributed by each atom)
Current Electricity

151784 The relaxation time $(\tau)$ for a free electron metal is

1 $\frac{\mathrm{m} l}{\mathrm{ne}^{2} \mathrm{AR}}$
2 $\frac{\mathrm{m}}{\mathrm{ne}^{2}}$
3 $\frac{\mathrm{me}^{2}}{l \mathrm{~A}}$
4 $\frac{\mathrm{Ane}^{2} \mathrm{R}}{\mathrm{m} l}$
Current Electricity

151785 A steady current flows in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor?

1 Electric field
2 Drift velocity
3 Current
4 Current density
Current Electricity

151786 Two cells $A$ and $B$ of emf $2 \mathrm{~V}$ and $1.5 \mathrm{~V}$ respectively, are connected as shown in figure through an external resistance $10 \Omega$. The internal resistance of each cell is $5 \Omega$. The potential difference $E_{A}$ and $E_{B}$ across the terminals of the cells $A$ and $B$ respectively

1 $\mathrm{E}_{\mathrm{A}}=2.0 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.5 \mathrm{~V}$
2 $\mathrm{E}_{\mathrm{A}}=2.125 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.375 \mathrm{~V}$
3 $\mathrm{E}_{\mathrm{A}}=1.875 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.625 \mathrm{~V}$
4 $\mathrm{E}_{\mathrm{A}}=1.875 \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=1.375 \mathrm{~V}$