151710 Two isolated metallic solid spheres of radii $R$ and $2 \mathrm{R}$ are charged such that both have same charge density $\sigma$. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is $\sigma^{\prime}$. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is
151710 Two isolated metallic solid spheres of radii $R$ and $2 \mathrm{R}$ are charged such that both have same charge density $\sigma$. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is $\sigma^{\prime}$. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is
151710 Two isolated metallic solid spheres of radii $R$ and $2 \mathrm{R}$ are charged such that both have same charge density $\sigma$. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is $\sigma^{\prime}$. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is
151710 Two isolated metallic solid spheres of radii $R$ and $2 \mathrm{R}$ are charged such that both have same charge density $\sigma$. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is $\sigma^{\prime}$. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is
151710 Two isolated metallic solid spheres of radii $R$ and $2 \mathrm{R}$ are charged such that both have same charge density $\sigma$. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is $\sigma^{\prime}$. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is