02. Radiation
Heat Transfer

149475 The temperature of two bodies $A$ and $B$ are respectively $727^{\circ} \mathrm{C}$ and $327^{\circ} \mathrm{C}$. The ratio $\mathrm{H}_{\mathrm{A}}: \mathrm{H}_{\mathrm{B}}$ of the rates of heat radiated by them is

1 $727: 327$
2 $5: 3$
3 $25: 9$
4 $625: 81$
Heat Transfer

149476 The surface area of a black body is $5 \times 10^{-4} \mathrm{~m}^{2}$ and its temperature is $727^{\circ} \mathrm{C}$. The energy radiated by it per minute is $\left(\sigma=5.670 \times 10^{-8}\right.$ $\mathbf{J} / \mathbf{m}^{2}-\mathbf{s}-\mathbf{K}^{4}$ )

1 $1.7 \times 10^{3} \mathrm{~J}$
2 $2.5 \times 10^{2} \mathrm{~J}$
3 $8 \times 10^{3} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Heat Transfer

149478 The amount of heat energy radiated by a metal at temperature $\mathbf{T}$ is $\mathbf{E}$. When the temperature is increased to $3 \mathrm{~T}$, energy radiated is

1 $81 \mathrm{E}$
2 $9 \mathrm{E}$
3 $3 \mathrm{E}$
4 $27 \mathrm{E}$
Heat Transfer

149480 Two spheres $P$ and $Q$, of same colour having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ respectively. The energy radiated by $P$ and $Q$ is

1 0.054
2 0.0034
3 1
4 2
Heat Transfer

149475 The temperature of two bodies $A$ and $B$ are respectively $727^{\circ} \mathrm{C}$ and $327^{\circ} \mathrm{C}$. The ratio $\mathrm{H}_{\mathrm{A}}: \mathrm{H}_{\mathrm{B}}$ of the rates of heat radiated by them is

1 $727: 327$
2 $5: 3$
3 $25: 9$
4 $625: 81$
Heat Transfer

149476 The surface area of a black body is $5 \times 10^{-4} \mathrm{~m}^{2}$ and its temperature is $727^{\circ} \mathrm{C}$. The energy radiated by it per minute is $\left(\sigma=5.670 \times 10^{-8}\right.$ $\mathbf{J} / \mathbf{m}^{2}-\mathbf{s}-\mathbf{K}^{4}$ )

1 $1.7 \times 10^{3} \mathrm{~J}$
2 $2.5 \times 10^{2} \mathrm{~J}$
3 $8 \times 10^{3} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Heat Transfer

149478 The amount of heat energy radiated by a metal at temperature $\mathbf{T}$ is $\mathbf{E}$. When the temperature is increased to $3 \mathrm{~T}$, energy radiated is

1 $81 \mathrm{E}$
2 $9 \mathrm{E}$
3 $3 \mathrm{E}$
4 $27 \mathrm{E}$
Heat Transfer

149480 Two spheres $P$ and $Q$, of same colour having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ respectively. The energy radiated by $P$ and $Q$ is

1 0.054
2 0.0034
3 1
4 2
Heat Transfer

149475 The temperature of two bodies $A$ and $B$ are respectively $727^{\circ} \mathrm{C}$ and $327^{\circ} \mathrm{C}$. The ratio $\mathrm{H}_{\mathrm{A}}: \mathrm{H}_{\mathrm{B}}$ of the rates of heat radiated by them is

1 $727: 327$
2 $5: 3$
3 $25: 9$
4 $625: 81$
Heat Transfer

149476 The surface area of a black body is $5 \times 10^{-4} \mathrm{~m}^{2}$ and its temperature is $727^{\circ} \mathrm{C}$. The energy radiated by it per minute is $\left(\sigma=5.670 \times 10^{-8}\right.$ $\mathbf{J} / \mathbf{m}^{2}-\mathbf{s}-\mathbf{K}^{4}$ )

1 $1.7 \times 10^{3} \mathrm{~J}$
2 $2.5 \times 10^{2} \mathrm{~J}$
3 $8 \times 10^{3} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Heat Transfer

149478 The amount of heat energy radiated by a metal at temperature $\mathbf{T}$ is $\mathbf{E}$. When the temperature is increased to $3 \mathrm{~T}$, energy radiated is

1 $81 \mathrm{E}$
2 $9 \mathrm{E}$
3 $3 \mathrm{E}$
4 $27 \mathrm{E}$
Heat Transfer

149480 Two spheres $P$ and $Q$, of same colour having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ respectively. The energy radiated by $P$ and $Q$ is

1 0.054
2 0.0034
3 1
4 2
Heat Transfer

149475 The temperature of two bodies $A$ and $B$ are respectively $727^{\circ} \mathrm{C}$ and $327^{\circ} \mathrm{C}$. The ratio $\mathrm{H}_{\mathrm{A}}: \mathrm{H}_{\mathrm{B}}$ of the rates of heat radiated by them is

1 $727: 327$
2 $5: 3$
3 $25: 9$
4 $625: 81$
Heat Transfer

149476 The surface area of a black body is $5 \times 10^{-4} \mathrm{~m}^{2}$ and its temperature is $727^{\circ} \mathrm{C}$. The energy radiated by it per minute is $\left(\sigma=5.670 \times 10^{-8}\right.$ $\mathbf{J} / \mathbf{m}^{2}-\mathbf{s}-\mathbf{K}^{4}$ )

1 $1.7 \times 10^{3} \mathrm{~J}$
2 $2.5 \times 10^{2} \mathrm{~J}$
3 $8 \times 10^{3} \mathrm{~J}$
4 $3 \times 10^{4} \mathrm{~J}$
Heat Transfer

149478 The amount of heat energy radiated by a metal at temperature $\mathbf{T}$ is $\mathbf{E}$. When the temperature is increased to $3 \mathrm{~T}$, energy radiated is

1 $81 \mathrm{E}$
2 $9 \mathrm{E}$
3 $3 \mathrm{E}$
4 $27 \mathrm{E}$
Heat Transfer

149480 Two spheres $P$ and $Q$, of same colour having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ respectively. The energy radiated by $P$ and $Q$ is

1 0.054
2 0.0034
3 1
4 2