149555
If $T$ is the temperature of a body then the rate at which energy is radiated from the body is proportional to
1 $\mathrm{T}$
2 $\mathrm{T}^{2}$
3 $\mathrm{T}^{3}$
4 $\mathrm{T}^{4}$
Explanation:
D Stefan Boltzmann law stated that the point of radiation emitted by a black body per unit area is directly proportional to the fourth power of the temperature. $\mathrm{Q}=\in \sigma \mathrm{A}(\mathrm{T})^{4}$ $\mathrm{Q} \propto \mathrm{T}^{4}$
TS EAMCET 29.09.2020
Heat Transfer
149567
Temperature of two stars in ratio $3: 2$ If wavelength of maximum intensity of first body is $400 \AA$ What is corresponding wavelength of second body?
1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Explanation:
B According to Wien's displacement law $\lambda_{\mathrm{m}} \mathrm{T}=$ constant $\therefore \frac{\left(\lambda_{\mathrm{m}}\right)_{1}}{\left(\lambda_{\mathrm{m}}\right)_{2}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{3}{2},\left(\lambda_{\mathrm{m}}\right)_{1}=4000 \AA$ $\therefore\left(\lambda_{\mathrm{m}}\right)_{2}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \lambda_{\mathrm{m} 1}=\frac{3}{2} \times 4000=6000 \AA$
DCE-2007
Heat Transfer
149592
Which one among the following radiations carries maximum energy?
1 Ultraviolet rays
2 Gamma-rays
3 X-rays
4 Infra-red rays
Explanation:
B The electromagnetic spectrum as shown below So, Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies.
NDA (I) 2008
Heat Transfer
149597
The temperature of a blackbody radiation enclosed in a container of volume $V$ is increased from $100^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$. The heat required in the process is
1 $4.79 \times 10^{-4} \mathrm{cal}$
2 $9.21 \times 10^{-5} \mathrm{cal}$
3 $2.17 \times 10^{-4} \mathrm{cal}$
4 $7.54 \times 10^{-4} \mathrm{cal}$
5 None of these
Explanation:
E According to Stefan's law, $\frac{\mathrm{P}}{\mathrm{A}}=\sigma \mathrm{T}^{4} \quad(\because \sigma=$ Stefan's constant $)$ Here, area of the body is not given, so information is insufficient.
149555
If $T$ is the temperature of a body then the rate at which energy is radiated from the body is proportional to
1 $\mathrm{T}$
2 $\mathrm{T}^{2}$
3 $\mathrm{T}^{3}$
4 $\mathrm{T}^{4}$
Explanation:
D Stefan Boltzmann law stated that the point of radiation emitted by a black body per unit area is directly proportional to the fourth power of the temperature. $\mathrm{Q}=\in \sigma \mathrm{A}(\mathrm{T})^{4}$ $\mathrm{Q} \propto \mathrm{T}^{4}$
TS EAMCET 29.09.2020
Heat Transfer
149567
Temperature of two stars in ratio $3: 2$ If wavelength of maximum intensity of first body is $400 \AA$ What is corresponding wavelength of second body?
1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Explanation:
B According to Wien's displacement law $\lambda_{\mathrm{m}} \mathrm{T}=$ constant $\therefore \frac{\left(\lambda_{\mathrm{m}}\right)_{1}}{\left(\lambda_{\mathrm{m}}\right)_{2}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{3}{2},\left(\lambda_{\mathrm{m}}\right)_{1}=4000 \AA$ $\therefore\left(\lambda_{\mathrm{m}}\right)_{2}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \lambda_{\mathrm{m} 1}=\frac{3}{2} \times 4000=6000 \AA$
DCE-2007
Heat Transfer
149592
Which one among the following radiations carries maximum energy?
1 Ultraviolet rays
2 Gamma-rays
3 X-rays
4 Infra-red rays
Explanation:
B The electromagnetic spectrum as shown below So, Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies.
NDA (I) 2008
Heat Transfer
149597
The temperature of a blackbody radiation enclosed in a container of volume $V$ is increased from $100^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$. The heat required in the process is
1 $4.79 \times 10^{-4} \mathrm{cal}$
2 $9.21 \times 10^{-5} \mathrm{cal}$
3 $2.17 \times 10^{-4} \mathrm{cal}$
4 $7.54 \times 10^{-4} \mathrm{cal}$
5 None of these
Explanation:
E According to Stefan's law, $\frac{\mathrm{P}}{\mathrm{A}}=\sigma \mathrm{T}^{4} \quad(\because \sigma=$ Stefan's constant $)$ Here, area of the body is not given, so information is insufficient.
149555
If $T$ is the temperature of a body then the rate at which energy is radiated from the body is proportional to
1 $\mathrm{T}$
2 $\mathrm{T}^{2}$
3 $\mathrm{T}^{3}$
4 $\mathrm{T}^{4}$
Explanation:
D Stefan Boltzmann law stated that the point of radiation emitted by a black body per unit area is directly proportional to the fourth power of the temperature. $\mathrm{Q}=\in \sigma \mathrm{A}(\mathrm{T})^{4}$ $\mathrm{Q} \propto \mathrm{T}^{4}$
TS EAMCET 29.09.2020
Heat Transfer
149567
Temperature of two stars in ratio $3: 2$ If wavelength of maximum intensity of first body is $400 \AA$ What is corresponding wavelength of second body?
1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Explanation:
B According to Wien's displacement law $\lambda_{\mathrm{m}} \mathrm{T}=$ constant $\therefore \frac{\left(\lambda_{\mathrm{m}}\right)_{1}}{\left(\lambda_{\mathrm{m}}\right)_{2}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{3}{2},\left(\lambda_{\mathrm{m}}\right)_{1}=4000 \AA$ $\therefore\left(\lambda_{\mathrm{m}}\right)_{2}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \lambda_{\mathrm{m} 1}=\frac{3}{2} \times 4000=6000 \AA$
DCE-2007
Heat Transfer
149592
Which one among the following radiations carries maximum energy?
1 Ultraviolet rays
2 Gamma-rays
3 X-rays
4 Infra-red rays
Explanation:
B The electromagnetic spectrum as shown below So, Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies.
NDA (I) 2008
Heat Transfer
149597
The temperature of a blackbody radiation enclosed in a container of volume $V$ is increased from $100^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$. The heat required in the process is
1 $4.79 \times 10^{-4} \mathrm{cal}$
2 $9.21 \times 10^{-5} \mathrm{cal}$
3 $2.17 \times 10^{-4} \mathrm{cal}$
4 $7.54 \times 10^{-4} \mathrm{cal}$
5 None of these
Explanation:
E According to Stefan's law, $\frac{\mathrm{P}}{\mathrm{A}}=\sigma \mathrm{T}^{4} \quad(\because \sigma=$ Stefan's constant $)$ Here, area of the body is not given, so information is insufficient.
149555
If $T$ is the temperature of a body then the rate at which energy is radiated from the body is proportional to
1 $\mathrm{T}$
2 $\mathrm{T}^{2}$
3 $\mathrm{T}^{3}$
4 $\mathrm{T}^{4}$
Explanation:
D Stefan Boltzmann law stated that the point of radiation emitted by a black body per unit area is directly proportional to the fourth power of the temperature. $\mathrm{Q}=\in \sigma \mathrm{A}(\mathrm{T})^{4}$ $\mathrm{Q} \propto \mathrm{T}^{4}$
TS EAMCET 29.09.2020
Heat Transfer
149567
Temperature of two stars in ratio $3: 2$ If wavelength of maximum intensity of first body is $400 \AA$ What is corresponding wavelength of second body?
1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Explanation:
B According to Wien's displacement law $\lambda_{\mathrm{m}} \mathrm{T}=$ constant $\therefore \frac{\left(\lambda_{\mathrm{m}}\right)_{1}}{\left(\lambda_{\mathrm{m}}\right)_{2}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{3}{2},\left(\lambda_{\mathrm{m}}\right)_{1}=4000 \AA$ $\therefore\left(\lambda_{\mathrm{m}}\right)_{2}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \lambda_{\mathrm{m} 1}=\frac{3}{2} \times 4000=6000 \AA$
DCE-2007
Heat Transfer
149592
Which one among the following radiations carries maximum energy?
1 Ultraviolet rays
2 Gamma-rays
3 X-rays
4 Infra-red rays
Explanation:
B The electromagnetic spectrum as shown below So, Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies.
NDA (I) 2008
Heat Transfer
149597
The temperature of a blackbody radiation enclosed in a container of volume $V$ is increased from $100^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$. The heat required in the process is
1 $4.79 \times 10^{-4} \mathrm{cal}$
2 $9.21 \times 10^{-5} \mathrm{cal}$
3 $2.17 \times 10^{-4} \mathrm{cal}$
4 $7.54 \times 10^{-4} \mathrm{cal}$
5 None of these
Explanation:
E According to Stefan's law, $\frac{\mathrm{P}}{\mathrm{A}}=\sigma \mathrm{T}^{4} \quad(\because \sigma=$ Stefan's constant $)$ Here, area of the body is not given, so information is insufficient.