02. Radiation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Heat Transfer

149455 The radiation energy density per unit wavelength at a temperature $T$ has a maximum at a wavelength $\lambda_{0}$. At temperature $2 \mathrm{~T}$, it will have a maximum at a wavelength:

1 $4 \lambda_{0}$
2 $2 \lambda_{0}$
3 $\lambda_{0} / 2$
4 $\lambda_{0} / 4$
Heat Transfer

149456 The total energy radiated from a black body source is collected for $1 \mathrm{~min}$ and is used to heat a quantity of water. The temperature of water is found to increase from $20^{\circ} \mathrm{C}$ to $20.5^{\circ} \mathrm{C}$. If the absolute temperature of the black body is doubled and the experiment is repeated with the same quantity of water at $20^{\circ} \mathrm{C}$, the temperature of water will be :

1 $21^{\circ} \mathrm{C}$
2 $22^{\circ} \mathrm{C}$
3 $24^{\circ} \mathrm{C}$
4 $28^{\circ} \mathrm{C}$
Heat Transfer

149457 The wavelength of maximum emitted energy $\left(\lambda_{m}\right)$ of a body at $700 \mathrm{~K}$ is $4.08 \mu \mathrm{m}$. If the temperature of the body is raised to $1400 \mathrm{~K}$, then the value of $\lambda_{m}$ will be

1 $1.02 \mu \mathrm{m}$
2 $16.32 \mu \mathrm{m}$
3 $8.16 \mu \mathrm{m}$
4 $2.04 \mu \mathrm{m}$
Heat Transfer

149458 A rectangular metal plate $8 \mathrm{~cm} \times 4 \mathrm{~cm}$ at $127^{\circ} \mathrm{C}$ emits $E \mathrm{Js}^{-1}$. If both length and breadth are halved and the temperature is raised to $327^{\circ} \mathrm{C}$, the rate of emission is

1 $\left(\frac{9}{4}\right) \mathrm{E} \mathrm{Js}^{-1}$
2 $\left(\frac{81}{64}\right) \mathrm{E} \mathrm{Js}^{-1}$
3 $\left(\frac{27}{8}\right) \mathrm{E} \mathrm{Js}^{-1}$
4 $\left(\frac{10}{7}\right) \mathrm{E} \mathrm{Js}^{-1}$
Heat Transfer

149455 The radiation energy density per unit wavelength at a temperature $T$ has a maximum at a wavelength $\lambda_{0}$. At temperature $2 \mathrm{~T}$, it will have a maximum at a wavelength:

1 $4 \lambda_{0}$
2 $2 \lambda_{0}$
3 $\lambda_{0} / 2$
4 $\lambda_{0} / 4$
Heat Transfer

149456 The total energy radiated from a black body source is collected for $1 \mathrm{~min}$ and is used to heat a quantity of water. The temperature of water is found to increase from $20^{\circ} \mathrm{C}$ to $20.5^{\circ} \mathrm{C}$. If the absolute temperature of the black body is doubled and the experiment is repeated with the same quantity of water at $20^{\circ} \mathrm{C}$, the temperature of water will be :

1 $21^{\circ} \mathrm{C}$
2 $22^{\circ} \mathrm{C}$
3 $24^{\circ} \mathrm{C}$
4 $28^{\circ} \mathrm{C}$
Heat Transfer

149457 The wavelength of maximum emitted energy $\left(\lambda_{m}\right)$ of a body at $700 \mathrm{~K}$ is $4.08 \mu \mathrm{m}$. If the temperature of the body is raised to $1400 \mathrm{~K}$, then the value of $\lambda_{m}$ will be

1 $1.02 \mu \mathrm{m}$
2 $16.32 \mu \mathrm{m}$
3 $8.16 \mu \mathrm{m}$
4 $2.04 \mu \mathrm{m}$
Heat Transfer

149458 A rectangular metal plate $8 \mathrm{~cm} \times 4 \mathrm{~cm}$ at $127^{\circ} \mathrm{C}$ emits $E \mathrm{Js}^{-1}$. If both length and breadth are halved and the temperature is raised to $327^{\circ} \mathrm{C}$, the rate of emission is

1 $\left(\frac{9}{4}\right) \mathrm{E} \mathrm{Js}^{-1}$
2 $\left(\frac{81}{64}\right) \mathrm{E} \mathrm{Js}^{-1}$
3 $\left(\frac{27}{8}\right) \mathrm{E} \mathrm{Js}^{-1}$
4 $\left(\frac{10}{7}\right) \mathrm{E} \mathrm{Js}^{-1}$
Heat Transfer

149455 The radiation energy density per unit wavelength at a temperature $T$ has a maximum at a wavelength $\lambda_{0}$. At temperature $2 \mathrm{~T}$, it will have a maximum at a wavelength:

1 $4 \lambda_{0}$
2 $2 \lambda_{0}$
3 $\lambda_{0} / 2$
4 $\lambda_{0} / 4$
Heat Transfer

149456 The total energy radiated from a black body source is collected for $1 \mathrm{~min}$ and is used to heat a quantity of water. The temperature of water is found to increase from $20^{\circ} \mathrm{C}$ to $20.5^{\circ} \mathrm{C}$. If the absolute temperature of the black body is doubled and the experiment is repeated with the same quantity of water at $20^{\circ} \mathrm{C}$, the temperature of water will be :

1 $21^{\circ} \mathrm{C}$
2 $22^{\circ} \mathrm{C}$
3 $24^{\circ} \mathrm{C}$
4 $28^{\circ} \mathrm{C}$
Heat Transfer

149457 The wavelength of maximum emitted energy $\left(\lambda_{m}\right)$ of a body at $700 \mathrm{~K}$ is $4.08 \mu \mathrm{m}$. If the temperature of the body is raised to $1400 \mathrm{~K}$, then the value of $\lambda_{m}$ will be

1 $1.02 \mu \mathrm{m}$
2 $16.32 \mu \mathrm{m}$
3 $8.16 \mu \mathrm{m}$
4 $2.04 \mu \mathrm{m}$
Heat Transfer

149458 A rectangular metal plate $8 \mathrm{~cm} \times 4 \mathrm{~cm}$ at $127^{\circ} \mathrm{C}$ emits $E \mathrm{Js}^{-1}$. If both length and breadth are halved and the temperature is raised to $327^{\circ} \mathrm{C}$, the rate of emission is

1 $\left(\frac{9}{4}\right) \mathrm{E} \mathrm{Js}^{-1}$
2 $\left(\frac{81}{64}\right) \mathrm{E} \mathrm{Js}^{-1}$
3 $\left(\frac{27}{8}\right) \mathrm{E} \mathrm{Js}^{-1}$
4 $\left(\frac{10}{7}\right) \mathrm{E} \mathrm{Js}^{-1}$
Heat Transfer

149455 The radiation energy density per unit wavelength at a temperature $T$ has a maximum at a wavelength $\lambda_{0}$. At temperature $2 \mathrm{~T}$, it will have a maximum at a wavelength:

1 $4 \lambda_{0}$
2 $2 \lambda_{0}$
3 $\lambda_{0} / 2$
4 $\lambda_{0} / 4$
Heat Transfer

149456 The total energy radiated from a black body source is collected for $1 \mathrm{~min}$ and is used to heat a quantity of water. The temperature of water is found to increase from $20^{\circ} \mathrm{C}$ to $20.5^{\circ} \mathrm{C}$. If the absolute temperature of the black body is doubled and the experiment is repeated with the same quantity of water at $20^{\circ} \mathrm{C}$, the temperature of water will be :

1 $21^{\circ} \mathrm{C}$
2 $22^{\circ} \mathrm{C}$
3 $24^{\circ} \mathrm{C}$
4 $28^{\circ} \mathrm{C}$
Heat Transfer

149457 The wavelength of maximum emitted energy $\left(\lambda_{m}\right)$ of a body at $700 \mathrm{~K}$ is $4.08 \mu \mathrm{m}$. If the temperature of the body is raised to $1400 \mathrm{~K}$, then the value of $\lambda_{m}$ will be

1 $1.02 \mu \mathrm{m}$
2 $16.32 \mu \mathrm{m}$
3 $8.16 \mu \mathrm{m}$
4 $2.04 \mu \mathrm{m}$
Heat Transfer

149458 A rectangular metal plate $8 \mathrm{~cm} \times 4 \mathrm{~cm}$ at $127^{\circ} \mathrm{C}$ emits $E \mathrm{Js}^{-1}$. If both length and breadth are halved and the temperature is raised to $327^{\circ} \mathrm{C}$, the rate of emission is

1 $\left(\frac{9}{4}\right) \mathrm{E} \mathrm{Js}^{-1}$
2 $\left(\frac{81}{64}\right) \mathrm{E} \mathrm{Js}^{-1}$
3 $\left(\frac{27}{8}\right) \mathrm{E} \mathrm{Js}^{-1}$
4 $\left(\frac{10}{7}\right) \mathrm{E} \mathrm{Js}^{-1}$