02. Radiation
Heat Transfer

149442 Temperature of two stars are in ratio $3: 2$. If wavelength of maximum intensity of first body is $4000 \AA$, what is corresponding wavelength of second body?

1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Heat Transfer

149444 If the emission rate of blackbody at $0^{\circ} \mathrm{C}$ is $R$, then the rate of emission at $273^{\circ} \mathrm{c}$ is

1 $2 \mathrm{R}$
2 $4 \mathrm{R}$
3 $8 \mathrm{R}$
4 $16 \mathrm{R}$
5 $32 \mathrm{R}$
Heat Transfer

149445 Two perfectly black spheres $A$ and $B$ having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$, respectively. The ratio of the energy radiated by $A$ to that by $B$ is

1 $1: 2$
2 $1: 1$
3 $2: 1$
4 $1: 4$
5 $1: 16$
Heat Transfer

149446 The plots of intensity of radiation versus wavelength of three black bodies at temperatures $T_{1}, T_{2}$ and $T_{3}$ are shown. Then,

1 $\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
3 $T_{2}>T_{3}>T_{1}$
4 $T_{1}>T_{3}>T_{2}$
5 $\mathrm{T}_{3}>\mathrm{T}_{1}>\mathrm{T}_{2}$
Heat Transfer

149447 A black body has maximum wavelength $\lambda_{\mathrm{m}}$ at $2000 \mathrm{~K}$. Its corresponding wavelength at $\mathbf{3 0 0 0}$ $\mathrm{K}$ will be:

1 $\frac{3}{2} \lambda_{m}$
2 $\frac{2}{3} \lambda_{m}$
3 $\frac{16}{81} \lambda_{m}$
4 $\frac{81}{16} \lambda_{m}$
5 $\frac{4}{3} \lambda_{\mathrm{m}}$
Heat Transfer

149442 Temperature of two stars are in ratio $3: 2$. If wavelength of maximum intensity of first body is $4000 \AA$, what is corresponding wavelength of second body?

1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Heat Transfer

149444 If the emission rate of blackbody at $0^{\circ} \mathrm{C}$ is $R$, then the rate of emission at $273^{\circ} \mathrm{c}$ is

1 $2 \mathrm{R}$
2 $4 \mathrm{R}$
3 $8 \mathrm{R}$
4 $16 \mathrm{R}$
5 $32 \mathrm{R}$
Heat Transfer

149445 Two perfectly black spheres $A$ and $B$ having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$, respectively. The ratio of the energy radiated by $A$ to that by $B$ is

1 $1: 2$
2 $1: 1$
3 $2: 1$
4 $1: 4$
5 $1: 16$
Heat Transfer

149446 The plots of intensity of radiation versus wavelength of three black bodies at temperatures $T_{1}, T_{2}$ and $T_{3}$ are shown. Then,

1 $\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
3 $T_{2}>T_{3}>T_{1}$
4 $T_{1}>T_{3}>T_{2}$
5 $\mathrm{T}_{3}>\mathrm{T}_{1}>\mathrm{T}_{2}$
Heat Transfer

149447 A black body has maximum wavelength $\lambda_{\mathrm{m}}$ at $2000 \mathrm{~K}$. Its corresponding wavelength at $\mathbf{3 0 0 0}$ $\mathrm{K}$ will be:

1 $\frac{3}{2} \lambda_{m}$
2 $\frac{2}{3} \lambda_{m}$
3 $\frac{16}{81} \lambda_{m}$
4 $\frac{81}{16} \lambda_{m}$
5 $\frac{4}{3} \lambda_{\mathrm{m}}$
Heat Transfer

149442 Temperature of two stars are in ratio $3: 2$. If wavelength of maximum intensity of first body is $4000 \AA$, what is corresponding wavelength of second body?

1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Heat Transfer

149444 If the emission rate of blackbody at $0^{\circ} \mathrm{C}$ is $R$, then the rate of emission at $273^{\circ} \mathrm{c}$ is

1 $2 \mathrm{R}$
2 $4 \mathrm{R}$
3 $8 \mathrm{R}$
4 $16 \mathrm{R}$
5 $32 \mathrm{R}$
Heat Transfer

149445 Two perfectly black spheres $A$ and $B$ having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$, respectively. The ratio of the energy radiated by $A$ to that by $B$ is

1 $1: 2$
2 $1: 1$
3 $2: 1$
4 $1: 4$
5 $1: 16$
Heat Transfer

149446 The plots of intensity of radiation versus wavelength of three black bodies at temperatures $T_{1}, T_{2}$ and $T_{3}$ are shown. Then,

1 $\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
3 $T_{2}>T_{3}>T_{1}$
4 $T_{1}>T_{3}>T_{2}$
5 $\mathrm{T}_{3}>\mathrm{T}_{1}>\mathrm{T}_{2}$
Heat Transfer

149447 A black body has maximum wavelength $\lambda_{\mathrm{m}}$ at $2000 \mathrm{~K}$. Its corresponding wavelength at $\mathbf{3 0 0 0}$ $\mathrm{K}$ will be:

1 $\frac{3}{2} \lambda_{m}$
2 $\frac{2}{3} \lambda_{m}$
3 $\frac{16}{81} \lambda_{m}$
4 $\frac{81}{16} \lambda_{m}$
5 $\frac{4}{3} \lambda_{\mathrm{m}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Heat Transfer

149442 Temperature of two stars are in ratio $3: 2$. If wavelength of maximum intensity of first body is $4000 \AA$, what is corresponding wavelength of second body?

1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Heat Transfer

149444 If the emission rate of blackbody at $0^{\circ} \mathrm{C}$ is $R$, then the rate of emission at $273^{\circ} \mathrm{c}$ is

1 $2 \mathrm{R}$
2 $4 \mathrm{R}$
3 $8 \mathrm{R}$
4 $16 \mathrm{R}$
5 $32 \mathrm{R}$
Heat Transfer

149445 Two perfectly black spheres $A$ and $B$ having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$, respectively. The ratio of the energy radiated by $A$ to that by $B$ is

1 $1: 2$
2 $1: 1$
3 $2: 1$
4 $1: 4$
5 $1: 16$
Heat Transfer

149446 The plots of intensity of radiation versus wavelength of three black bodies at temperatures $T_{1}, T_{2}$ and $T_{3}$ are shown. Then,

1 $\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
3 $T_{2}>T_{3}>T_{1}$
4 $T_{1}>T_{3}>T_{2}$
5 $\mathrm{T}_{3}>\mathrm{T}_{1}>\mathrm{T}_{2}$
Heat Transfer

149447 A black body has maximum wavelength $\lambda_{\mathrm{m}}$ at $2000 \mathrm{~K}$. Its corresponding wavelength at $\mathbf{3 0 0 0}$ $\mathrm{K}$ will be:

1 $\frac{3}{2} \lambda_{m}$
2 $\frac{2}{3} \lambda_{m}$
3 $\frac{16}{81} \lambda_{m}$
4 $\frac{81}{16} \lambda_{m}$
5 $\frac{4}{3} \lambda_{\mathrm{m}}$
Heat Transfer

149442 Temperature of two stars are in ratio $3: 2$. If wavelength of maximum intensity of first body is $4000 \AA$, what is corresponding wavelength of second body?

1 $9000 \AA$
2 $6000 \AA$
3 $2000 \AA$
4 $8000 \AA$
Heat Transfer

149444 If the emission rate of blackbody at $0^{\circ} \mathrm{C}$ is $R$, then the rate of emission at $273^{\circ} \mathrm{c}$ is

1 $2 \mathrm{R}$
2 $4 \mathrm{R}$
3 $8 \mathrm{R}$
4 $16 \mathrm{R}$
5 $32 \mathrm{R}$
Heat Transfer

149445 Two perfectly black spheres $A$ and $B$ having radii $8 \mathrm{~cm}$ and $2 \mathrm{~cm}$ are maintained at temperatures $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$, respectively. The ratio of the energy radiated by $A$ to that by $B$ is

1 $1: 2$
2 $1: 1$
3 $2: 1$
4 $1: 4$
5 $1: 16$
Heat Transfer

149446 The plots of intensity of radiation versus wavelength of three black bodies at temperatures $T_{1}, T_{2}$ and $T_{3}$ are shown. Then,

1 $\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
3 $T_{2}>T_{3}>T_{1}$
4 $T_{1}>T_{3}>T_{2}$
5 $\mathrm{T}_{3}>\mathrm{T}_{1}>\mathrm{T}_{2}$
Heat Transfer

149447 A black body has maximum wavelength $\lambda_{\mathrm{m}}$ at $2000 \mathrm{~K}$. Its corresponding wavelength at $\mathbf{3 0 0 0}$ $\mathrm{K}$ will be:

1 $\frac{3}{2} \lambda_{m}$
2 $\frac{2}{3} \lambda_{m}$
3 $\frac{16}{81} \lambda_{m}$
4 $\frac{81}{16} \lambda_{m}$
5 $\frac{4}{3} \lambda_{\mathrm{m}}$