10. Second Law of thermodynamics and Entropy
Thermodynamics

148692 The change in the entropy of a 1 mole of an ideal gas which went through an isothermal process from an initial state $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}\right)$ to the final state $\left(P_{2}, V_{2}, T\right)$ is equal to :

1 Zero
2 $\mathrm{R} \ln \mathrm{T}$
3 $\mathrm{R} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
4 $\mathrm{R} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
Thermodynamics

148693 If ' $\Delta Q$ ' is the amount of heat supplied to ' $n$ ' moles of a diatomic gas at constant pressure, ' $\Delta \mathbf{U}$ ' is the change in internal energy and ' $\Delta \mathbf{W}$ ' is the work done, then $\Delta W: \Delta \mathrm{U}: \Delta \mathbf{Q}$ is

1 $1: 2: 3$
2 $2: 5: 7$
3 $2: 3: 4$
4 $5: 7: 9$
Thermodynamics

148696 Find the ratio of $\frac{\Delta Q}{\Delta W}$ in an isobaric process, the ratio of molar specific heat capacities of the gas used is $\frac{C_{p}}{C_{v}}=\gamma$

1 $\frac{\gamma}{\gamma-1}$
2 $\frac{\gamma-1}{\gamma}$
3 $\frac{\gamma+1}{\gamma}$
4 $\frac{\gamma}{\gamma+1}$
Thermodynamics

148697 No process is possible whose sole result is the transfer of heat from a colder object to a hotter object. This is Clausius statement for

1 Zeroth law of thermodynamics
2 First law of thermodynamics
3 Second law of thermodynamics
4 Carnot's theorem
5 Principle of refrigeration
Thermodynamics

148700 A liquid of mass $m$ and specific heat $s$ is heated to a temperature $T$. Another liquid of mass $\mathrm{m} / \mathbf{2}$ and specific heat $2 \mathrm{~s}$ is heated to temperature 2T. If these two liquids are mixed, the resultant temperature of the mixture will be

1 $\frac{2}{3} \mathrm{~T}$
2 $\frac{8}{5} \mathrm{~T}$
3 $\frac{3}{4} \mathrm{~T}$
4 $\frac{3}{2} \mathrm{~T}$
Thermodynamics

148692 The change in the entropy of a 1 mole of an ideal gas which went through an isothermal process from an initial state $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}\right)$ to the final state $\left(P_{2}, V_{2}, T\right)$ is equal to :

1 Zero
2 $\mathrm{R} \ln \mathrm{T}$
3 $\mathrm{R} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
4 $\mathrm{R} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
Thermodynamics

148693 If ' $\Delta Q$ ' is the amount of heat supplied to ' $n$ ' moles of a diatomic gas at constant pressure, ' $\Delta \mathbf{U}$ ' is the change in internal energy and ' $\Delta \mathbf{W}$ ' is the work done, then $\Delta W: \Delta \mathrm{U}: \Delta \mathbf{Q}$ is

1 $1: 2: 3$
2 $2: 5: 7$
3 $2: 3: 4$
4 $5: 7: 9$
Thermodynamics

148696 Find the ratio of $\frac{\Delta Q}{\Delta W}$ in an isobaric process, the ratio of molar specific heat capacities of the gas used is $\frac{C_{p}}{C_{v}}=\gamma$

1 $\frac{\gamma}{\gamma-1}$
2 $\frac{\gamma-1}{\gamma}$
3 $\frac{\gamma+1}{\gamma}$
4 $\frac{\gamma}{\gamma+1}$
Thermodynamics

148697 No process is possible whose sole result is the transfer of heat from a colder object to a hotter object. This is Clausius statement for

1 Zeroth law of thermodynamics
2 First law of thermodynamics
3 Second law of thermodynamics
4 Carnot's theorem
5 Principle of refrigeration
Thermodynamics

148700 A liquid of mass $m$ and specific heat $s$ is heated to a temperature $T$. Another liquid of mass $\mathrm{m} / \mathbf{2}$ and specific heat $2 \mathrm{~s}$ is heated to temperature 2T. If these two liquids are mixed, the resultant temperature of the mixture will be

1 $\frac{2}{3} \mathrm{~T}$
2 $\frac{8}{5} \mathrm{~T}$
3 $\frac{3}{4} \mathrm{~T}$
4 $\frac{3}{2} \mathrm{~T}$
Thermodynamics

148692 The change in the entropy of a 1 mole of an ideal gas which went through an isothermal process from an initial state $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}\right)$ to the final state $\left(P_{2}, V_{2}, T\right)$ is equal to :

1 Zero
2 $\mathrm{R} \ln \mathrm{T}$
3 $\mathrm{R} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
4 $\mathrm{R} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
Thermodynamics

148693 If ' $\Delta Q$ ' is the amount of heat supplied to ' $n$ ' moles of a diatomic gas at constant pressure, ' $\Delta \mathbf{U}$ ' is the change in internal energy and ' $\Delta \mathbf{W}$ ' is the work done, then $\Delta W: \Delta \mathrm{U}: \Delta \mathbf{Q}$ is

1 $1: 2: 3$
2 $2: 5: 7$
3 $2: 3: 4$
4 $5: 7: 9$
Thermodynamics

148696 Find the ratio of $\frac{\Delta Q}{\Delta W}$ in an isobaric process, the ratio of molar specific heat capacities of the gas used is $\frac{C_{p}}{C_{v}}=\gamma$

1 $\frac{\gamma}{\gamma-1}$
2 $\frac{\gamma-1}{\gamma}$
3 $\frac{\gamma+1}{\gamma}$
4 $\frac{\gamma}{\gamma+1}$
Thermodynamics

148697 No process is possible whose sole result is the transfer of heat from a colder object to a hotter object. This is Clausius statement for

1 Zeroth law of thermodynamics
2 First law of thermodynamics
3 Second law of thermodynamics
4 Carnot's theorem
5 Principle of refrigeration
Thermodynamics

148700 A liquid of mass $m$ and specific heat $s$ is heated to a temperature $T$. Another liquid of mass $\mathrm{m} / \mathbf{2}$ and specific heat $2 \mathrm{~s}$ is heated to temperature 2T. If these two liquids are mixed, the resultant temperature of the mixture will be

1 $\frac{2}{3} \mathrm{~T}$
2 $\frac{8}{5} \mathrm{~T}$
3 $\frac{3}{4} \mathrm{~T}$
4 $\frac{3}{2} \mathrm{~T}$
Thermodynamics

148692 The change in the entropy of a 1 mole of an ideal gas which went through an isothermal process from an initial state $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}\right)$ to the final state $\left(P_{2}, V_{2}, T\right)$ is equal to :

1 Zero
2 $\mathrm{R} \ln \mathrm{T}$
3 $\mathrm{R} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
4 $\mathrm{R} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
Thermodynamics

148693 If ' $\Delta Q$ ' is the amount of heat supplied to ' $n$ ' moles of a diatomic gas at constant pressure, ' $\Delta \mathbf{U}$ ' is the change in internal energy and ' $\Delta \mathbf{W}$ ' is the work done, then $\Delta W: \Delta \mathrm{U}: \Delta \mathbf{Q}$ is

1 $1: 2: 3$
2 $2: 5: 7$
3 $2: 3: 4$
4 $5: 7: 9$
Thermodynamics

148696 Find the ratio of $\frac{\Delta Q}{\Delta W}$ in an isobaric process, the ratio of molar specific heat capacities of the gas used is $\frac{C_{p}}{C_{v}}=\gamma$

1 $\frac{\gamma}{\gamma-1}$
2 $\frac{\gamma-1}{\gamma}$
3 $\frac{\gamma+1}{\gamma}$
4 $\frac{\gamma}{\gamma+1}$
Thermodynamics

148697 No process is possible whose sole result is the transfer of heat from a colder object to a hotter object. This is Clausius statement for

1 Zeroth law of thermodynamics
2 First law of thermodynamics
3 Second law of thermodynamics
4 Carnot's theorem
5 Principle of refrigeration
Thermodynamics

148700 A liquid of mass $m$ and specific heat $s$ is heated to a temperature $T$. Another liquid of mass $\mathrm{m} / \mathbf{2}$ and specific heat $2 \mathrm{~s}$ is heated to temperature 2T. If these two liquids are mixed, the resultant temperature of the mixture will be

1 $\frac{2}{3} \mathrm{~T}$
2 $\frac{8}{5} \mathrm{~T}$
3 $\frac{3}{4} \mathrm{~T}$
4 $\frac{3}{2} \mathrm{~T}$
Thermodynamics

148692 The change in the entropy of a 1 mole of an ideal gas which went through an isothermal process from an initial state $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}\right)$ to the final state $\left(P_{2}, V_{2}, T\right)$ is equal to :

1 Zero
2 $\mathrm{R} \ln \mathrm{T}$
3 $\mathrm{R} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
4 $\mathrm{R} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
Thermodynamics

148693 If ' $\Delta Q$ ' is the amount of heat supplied to ' $n$ ' moles of a diatomic gas at constant pressure, ' $\Delta \mathbf{U}$ ' is the change in internal energy and ' $\Delta \mathbf{W}$ ' is the work done, then $\Delta W: \Delta \mathrm{U}: \Delta \mathbf{Q}$ is

1 $1: 2: 3$
2 $2: 5: 7$
3 $2: 3: 4$
4 $5: 7: 9$
Thermodynamics

148696 Find the ratio of $\frac{\Delta Q}{\Delta W}$ in an isobaric process, the ratio of molar specific heat capacities of the gas used is $\frac{C_{p}}{C_{v}}=\gamma$

1 $\frac{\gamma}{\gamma-1}$
2 $\frac{\gamma-1}{\gamma}$
3 $\frac{\gamma+1}{\gamma}$
4 $\frac{\gamma}{\gamma+1}$
Thermodynamics

148697 No process is possible whose sole result is the transfer of heat from a colder object to a hotter object. This is Clausius statement for

1 Zeroth law of thermodynamics
2 First law of thermodynamics
3 Second law of thermodynamics
4 Carnot's theorem
5 Principle of refrigeration
Thermodynamics

148700 A liquid of mass $m$ and specific heat $s$ is heated to a temperature $T$. Another liquid of mass $\mathrm{m} / \mathbf{2}$ and specific heat $2 \mathrm{~s}$ is heated to temperature 2T. If these two liquids are mixed, the resultant temperature of the mixture will be

1 $\frac{2}{3} \mathrm{~T}$
2 $\frac{8}{5} \mathrm{~T}$
3 $\frac{3}{4} \mathrm{~T}$
4 $\frac{3}{2} \mathrm{~T}$