09. Heat Engine, Carnot’s Cycle and Refrigeration (COP)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

148611 The efficiency of a Carnot engine is $60 \%$. If the temperature of source is $127^{\circ} \mathrm{C}$. The sink must be maintained at

1 $113 \mathrm{~K}$
2 $+113^{\circ} \mathrm{C}$
3 $-113^{\circ} \mathrm{C}$
4 $-113 \mathrm{~K}$
Thermodynamics

148615 Efficiency of engine working at $40^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ is

1 $0.064 \%$
2 $0.64 \%$
3 $64 \%$
4 $6.4 \%$
Thermodynamics

148617 The Carnot heat engine have an efficiency of $\mathbf{5 0} \%$. The temperature of sink is maintained at $500 \mathrm{~K}$. To increase the efficiency upto $80 \%$, the increment in the source temperature is

1 $1500 \mathrm{~K}$
2 $2500 \mathrm{~K}$
3 $500 \mathrm{~K}$
4 $2000 \mathrm{~K}$
Thermodynamics

148618 The following figure shows a Carnot engine that works between temperatures $T_{1}=400 \mathrm{~K}$ and $T_{2}=200 \mathrm{~K}$ and drives a Carnot refrigeration that works between temperatures $T_{3}=350 \mathrm{~K}$ and $T_{4}=250 \mathrm{~K}$. The quantity $\frac{\mathrm{Q}_{3}}{\mathrm{Q}_{1}}$ will be

1 1.5
2 2.0
3 2.25
4 1.75
Thermodynamics

148611 The efficiency of a Carnot engine is $60 \%$. If the temperature of source is $127^{\circ} \mathrm{C}$. The sink must be maintained at

1 $113 \mathrm{~K}$
2 $+113^{\circ} \mathrm{C}$
3 $-113^{\circ} \mathrm{C}$
4 $-113 \mathrm{~K}$
Thermodynamics

148615 Efficiency of engine working at $40^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ is

1 $0.064 \%$
2 $0.64 \%$
3 $64 \%$
4 $6.4 \%$
Thermodynamics

148617 The Carnot heat engine have an efficiency of $\mathbf{5 0} \%$. The temperature of sink is maintained at $500 \mathrm{~K}$. To increase the efficiency upto $80 \%$, the increment in the source temperature is

1 $1500 \mathrm{~K}$
2 $2500 \mathrm{~K}$
3 $500 \mathrm{~K}$
4 $2000 \mathrm{~K}$
Thermodynamics

148618 The following figure shows a Carnot engine that works between temperatures $T_{1}=400 \mathrm{~K}$ and $T_{2}=200 \mathrm{~K}$ and drives a Carnot refrigeration that works between temperatures $T_{3}=350 \mathrm{~K}$ and $T_{4}=250 \mathrm{~K}$. The quantity $\frac{\mathrm{Q}_{3}}{\mathrm{Q}_{1}}$ will be

1 1.5
2 2.0
3 2.25
4 1.75
Thermodynamics

148611 The efficiency of a Carnot engine is $60 \%$. If the temperature of source is $127^{\circ} \mathrm{C}$. The sink must be maintained at

1 $113 \mathrm{~K}$
2 $+113^{\circ} \mathrm{C}$
3 $-113^{\circ} \mathrm{C}$
4 $-113 \mathrm{~K}$
Thermodynamics

148615 Efficiency of engine working at $40^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ is

1 $0.064 \%$
2 $0.64 \%$
3 $64 \%$
4 $6.4 \%$
Thermodynamics

148617 The Carnot heat engine have an efficiency of $\mathbf{5 0} \%$. The temperature of sink is maintained at $500 \mathrm{~K}$. To increase the efficiency upto $80 \%$, the increment in the source temperature is

1 $1500 \mathrm{~K}$
2 $2500 \mathrm{~K}$
3 $500 \mathrm{~K}$
4 $2000 \mathrm{~K}$
Thermodynamics

148618 The following figure shows a Carnot engine that works between temperatures $T_{1}=400 \mathrm{~K}$ and $T_{2}=200 \mathrm{~K}$ and drives a Carnot refrigeration that works between temperatures $T_{3}=350 \mathrm{~K}$ and $T_{4}=250 \mathrm{~K}$. The quantity $\frac{\mathrm{Q}_{3}}{\mathrm{Q}_{1}}$ will be

1 1.5
2 2.0
3 2.25
4 1.75
Thermodynamics

148611 The efficiency of a Carnot engine is $60 \%$. If the temperature of source is $127^{\circ} \mathrm{C}$. The sink must be maintained at

1 $113 \mathrm{~K}$
2 $+113^{\circ} \mathrm{C}$
3 $-113^{\circ} \mathrm{C}$
4 $-113 \mathrm{~K}$
Thermodynamics

148615 Efficiency of engine working at $40^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ is

1 $0.064 \%$
2 $0.64 \%$
3 $64 \%$
4 $6.4 \%$
Thermodynamics

148617 The Carnot heat engine have an efficiency of $\mathbf{5 0} \%$. The temperature of sink is maintained at $500 \mathrm{~K}$. To increase the efficiency upto $80 \%$, the increment in the source temperature is

1 $1500 \mathrm{~K}$
2 $2500 \mathrm{~K}$
3 $500 \mathrm{~K}$
4 $2000 \mathrm{~K}$
Thermodynamics

148618 The following figure shows a Carnot engine that works between temperatures $T_{1}=400 \mathrm{~K}$ and $T_{2}=200 \mathrm{~K}$ and drives a Carnot refrigeration that works between temperatures $T_{3}=350 \mathrm{~K}$ and $T_{4}=250 \mathrm{~K}$. The quantity $\frac{\mathrm{Q}_{3}}{\mathrm{Q}_{1}}$ will be

1 1.5
2 2.0
3 2.25
4 1.75