148405
A diatomic gas which has initial volume of 10 liter is isothermally compressed to $1 / 15$ th of its original volume where initial pressure is $10^{5}$ Pascal. If temperature is $27^{\circ} \mathrm{C}$ them find the work done by gas.
148407
An ideal gas is subjected to an isothermal expansion such that its volume changes from $V_{i}$ to $V_{f}$ and pressure from $P_{i}$ to $P_{f}$ the work done on the gas is:
1 $\mathrm{W}=+n R T \log \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}$
D The work done in expansion of gas $\mathrm{W}=n R T \ln \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}=n R T \ln \frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{f}}}$ The work done on the gas will be negative. $\therefore \quad \mathrm{W}=-\mathrm{nRT} \ln \left(\frac{\mathrm{p}_{\mathrm{f}}}{\mathrm{p}_{\mathrm{i}}}\right)$
Thermodynamics
148409
A gas is compressed isothermally the r.m.s. velocity of its molecules
1 increases
2 decreases
3 first increased and then decreases
4 remains the same
Explanation:
D R.M.S. velocity of gas, $\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$ $\mathrm{V}_{\mathrm{rms}} \propto \sqrt{\mathrm{T}}$ If a gas is compressed isothermally then the r.m.s velocity of the molecules remain the same.
148405
A diatomic gas which has initial volume of 10 liter is isothermally compressed to $1 / 15$ th of its original volume where initial pressure is $10^{5}$ Pascal. If temperature is $27^{\circ} \mathrm{C}$ them find the work done by gas.
148407
An ideal gas is subjected to an isothermal expansion such that its volume changes from $V_{i}$ to $V_{f}$ and pressure from $P_{i}$ to $P_{f}$ the work done on the gas is:
1 $\mathrm{W}=+n R T \log \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}$
D The work done in expansion of gas $\mathrm{W}=n R T \ln \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}=n R T \ln \frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{f}}}$ The work done on the gas will be negative. $\therefore \quad \mathrm{W}=-\mathrm{nRT} \ln \left(\frac{\mathrm{p}_{\mathrm{f}}}{\mathrm{p}_{\mathrm{i}}}\right)$
Thermodynamics
148409
A gas is compressed isothermally the r.m.s. velocity of its molecules
1 increases
2 decreases
3 first increased and then decreases
4 remains the same
Explanation:
D R.M.S. velocity of gas, $\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$ $\mathrm{V}_{\mathrm{rms}} \propto \sqrt{\mathrm{T}}$ If a gas is compressed isothermally then the r.m.s velocity of the molecules remain the same.
148405
A diatomic gas which has initial volume of 10 liter is isothermally compressed to $1 / 15$ th of its original volume where initial pressure is $10^{5}$ Pascal. If temperature is $27^{\circ} \mathrm{C}$ them find the work done by gas.
148407
An ideal gas is subjected to an isothermal expansion such that its volume changes from $V_{i}$ to $V_{f}$ and pressure from $P_{i}$ to $P_{f}$ the work done on the gas is:
1 $\mathrm{W}=+n R T \log \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}$
D The work done in expansion of gas $\mathrm{W}=n R T \ln \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}=n R T \ln \frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{f}}}$ The work done on the gas will be negative. $\therefore \quad \mathrm{W}=-\mathrm{nRT} \ln \left(\frac{\mathrm{p}_{\mathrm{f}}}{\mathrm{p}_{\mathrm{i}}}\right)$
Thermodynamics
148409
A gas is compressed isothermally the r.m.s. velocity of its molecules
1 increases
2 decreases
3 first increased and then decreases
4 remains the same
Explanation:
D R.M.S. velocity of gas, $\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$ $\mathrm{V}_{\mathrm{rms}} \propto \sqrt{\mathrm{T}}$ If a gas is compressed isothermally then the r.m.s velocity of the molecules remain the same.
148405
A diatomic gas which has initial volume of 10 liter is isothermally compressed to $1 / 15$ th of its original volume where initial pressure is $10^{5}$ Pascal. If temperature is $27^{\circ} \mathrm{C}$ them find the work done by gas.
148407
An ideal gas is subjected to an isothermal expansion such that its volume changes from $V_{i}$ to $V_{f}$ and pressure from $P_{i}$ to $P_{f}$ the work done on the gas is:
1 $\mathrm{W}=+n R T \log \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}$
D The work done in expansion of gas $\mathrm{W}=n R T \ln \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}=n R T \ln \frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{f}}}$ The work done on the gas will be negative. $\therefore \quad \mathrm{W}=-\mathrm{nRT} \ln \left(\frac{\mathrm{p}_{\mathrm{f}}}{\mathrm{p}_{\mathrm{i}}}\right)$
Thermodynamics
148409
A gas is compressed isothermally the r.m.s. velocity of its molecules
1 increases
2 decreases
3 first increased and then decreases
4 remains the same
Explanation:
D R.M.S. velocity of gas, $\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$ $\mathrm{V}_{\mathrm{rms}} \propto \sqrt{\mathrm{T}}$ If a gas is compressed isothermally then the r.m.s velocity of the molecules remain the same.