02. Thermodynamics Process
Thermodynamics

148297 An ideal gas at pressure $p$ is adiabatically compressed so that its density becomes $n$ times the initial value. The final pressure of the gas will be $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$

1 $\mathrm{n}^{\gamma} \mathrm{p}$
2 $\mathrm{n}^{-\gamma} \mathrm{p}$
3 $\mathrm{n}^{(\gamma-1)} \mathrm{p}$
4 $\mathrm{n}^{(1-\gamma)} \mathrm{p}$
Thermodynamics

148298 At constant temperature on increasing the pressure of a gas by $10 \%$, its volume will decrease by-

1 $9.09 \%$
2 $10 \%$
3 $5 \%$
4 $20 \%$
Thermodynamics

148299 Certain amount of an ideal gas of molecular mass $M$ is contained in a closed vessel. If the vessel is moving with a constant velocity $v$, then the rise in temperature of the gas when the vessel is suddenly stopped will be
$\left(\right.$ Take $\left.\gamma=\frac{\mathbf{C}_{\mathbf{P}}}{\mathbf{C}_{\mathrm{V}}}\right)$

1 $\frac{\mathrm{Mv}^{2}}{2 \mathrm{R}(\gamma+1)}$
2 $\frac{\mathrm{Mv}^{2}}{2 \mathrm{R}(\gamma-1)}$
3 $\frac{\mathrm{Mv}^{2}(\gamma-1)}{2 \mathrm{R}}$
4 $\frac{\mathrm{Mv}^{2}(\gamma+1)}{2 \mathrm{R}}$
Thermodynamics

148300 At $27^{\circ} \mathrm{C}$ a gas suddenly compressed such that its pressure becomes 1/8th of original pressure, The temperature of the gas will be $(\gamma=5 / 3)$

1 $-142^{\circ} \mathrm{C}$
2 $300 \mathrm{~K}$
3 $327^{\circ} \mathrm{C}$
4 $420 \mathrm{~K}$
Thermodynamics

148297 An ideal gas at pressure $p$ is adiabatically compressed so that its density becomes $n$ times the initial value. The final pressure of the gas will be $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$

1 $\mathrm{n}^{\gamma} \mathrm{p}$
2 $\mathrm{n}^{-\gamma} \mathrm{p}$
3 $\mathrm{n}^{(\gamma-1)} \mathrm{p}$
4 $\mathrm{n}^{(1-\gamma)} \mathrm{p}$
Thermodynamics

148298 At constant temperature on increasing the pressure of a gas by $10 \%$, its volume will decrease by-

1 $9.09 \%$
2 $10 \%$
3 $5 \%$
4 $20 \%$
Thermodynamics

148299 Certain amount of an ideal gas of molecular mass $M$ is contained in a closed vessel. If the vessel is moving with a constant velocity $v$, then the rise in temperature of the gas when the vessel is suddenly stopped will be
$\left(\right.$ Take $\left.\gamma=\frac{\mathbf{C}_{\mathbf{P}}}{\mathbf{C}_{\mathrm{V}}}\right)$

1 $\frac{\mathrm{Mv}^{2}}{2 \mathrm{R}(\gamma+1)}$
2 $\frac{\mathrm{Mv}^{2}}{2 \mathrm{R}(\gamma-1)}$
3 $\frac{\mathrm{Mv}^{2}(\gamma-1)}{2 \mathrm{R}}$
4 $\frac{\mathrm{Mv}^{2}(\gamma+1)}{2 \mathrm{R}}$
Thermodynamics

148300 At $27^{\circ} \mathrm{C}$ a gas suddenly compressed such that its pressure becomes 1/8th of original pressure, The temperature of the gas will be $(\gamma=5 / 3)$

1 $-142^{\circ} \mathrm{C}$
2 $300 \mathrm{~K}$
3 $327^{\circ} \mathrm{C}$
4 $420 \mathrm{~K}$
Thermodynamics

148297 An ideal gas at pressure $p$ is adiabatically compressed so that its density becomes $n$ times the initial value. The final pressure of the gas will be $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$

1 $\mathrm{n}^{\gamma} \mathrm{p}$
2 $\mathrm{n}^{-\gamma} \mathrm{p}$
3 $\mathrm{n}^{(\gamma-1)} \mathrm{p}$
4 $\mathrm{n}^{(1-\gamma)} \mathrm{p}$
Thermodynamics

148298 At constant temperature on increasing the pressure of a gas by $10 \%$, its volume will decrease by-

1 $9.09 \%$
2 $10 \%$
3 $5 \%$
4 $20 \%$
Thermodynamics

148299 Certain amount of an ideal gas of molecular mass $M$ is contained in a closed vessel. If the vessel is moving with a constant velocity $v$, then the rise in temperature of the gas when the vessel is suddenly stopped will be
$\left(\right.$ Take $\left.\gamma=\frac{\mathbf{C}_{\mathbf{P}}}{\mathbf{C}_{\mathrm{V}}}\right)$

1 $\frac{\mathrm{Mv}^{2}}{2 \mathrm{R}(\gamma+1)}$
2 $\frac{\mathrm{Mv}^{2}}{2 \mathrm{R}(\gamma-1)}$
3 $\frac{\mathrm{Mv}^{2}(\gamma-1)}{2 \mathrm{R}}$
4 $\frac{\mathrm{Mv}^{2}(\gamma+1)}{2 \mathrm{R}}$
Thermodynamics

148300 At $27^{\circ} \mathrm{C}$ a gas suddenly compressed such that its pressure becomes 1/8th of original pressure, The temperature of the gas will be $(\gamma=5 / 3)$

1 $-142^{\circ} \mathrm{C}$
2 $300 \mathrm{~K}$
3 $327^{\circ} \mathrm{C}$
4 $420 \mathrm{~K}$
Thermodynamics

148297 An ideal gas at pressure $p$ is adiabatically compressed so that its density becomes $n$ times the initial value. The final pressure of the gas will be $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$

1 $\mathrm{n}^{\gamma} \mathrm{p}$
2 $\mathrm{n}^{-\gamma} \mathrm{p}$
3 $\mathrm{n}^{(\gamma-1)} \mathrm{p}$
4 $\mathrm{n}^{(1-\gamma)} \mathrm{p}$
Thermodynamics

148298 At constant temperature on increasing the pressure of a gas by $10 \%$, its volume will decrease by-

1 $9.09 \%$
2 $10 \%$
3 $5 \%$
4 $20 \%$
Thermodynamics

148299 Certain amount of an ideal gas of molecular mass $M$ is contained in a closed vessel. If the vessel is moving with a constant velocity $v$, then the rise in temperature of the gas when the vessel is suddenly stopped will be
$\left(\right.$ Take $\left.\gamma=\frac{\mathbf{C}_{\mathbf{P}}}{\mathbf{C}_{\mathrm{V}}}\right)$

1 $\frac{\mathrm{Mv}^{2}}{2 \mathrm{R}(\gamma+1)}$
2 $\frac{\mathrm{Mv}^{2}}{2 \mathrm{R}(\gamma-1)}$
3 $\frac{\mathrm{Mv}^{2}(\gamma-1)}{2 \mathrm{R}}$
4 $\frac{\mathrm{Mv}^{2}(\gamma+1)}{2 \mathrm{R}}$
Thermodynamics

148300 At $27^{\circ} \mathrm{C}$ a gas suddenly compressed such that its pressure becomes 1/8th of original pressure, The temperature of the gas will be $(\gamma=5 / 3)$

1 $-142^{\circ} \mathrm{C}$
2 $300 \mathrm{~K}$
3 $327^{\circ} \mathrm{C}$
4 $420 \mathrm{~K}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here