02. Thermodynamics Process
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

148272 If the volume of gas is changed from $V_{1}$ to $V_{2}$ isothermally, then work done is :

1 $\mathrm{RT} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
2 $\mathrm{RT} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
3 $\mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \ell \mathrm{n} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
4 $\mathrm{R}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \ell \mathrm{n} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
Thermodynamics

148276 The work done in taking an ideal gas through one cycle of operation as shown in the indicator diagram below.

1 $10^{-5} \mathrm{~J}$
2 $10^{-3} \mathrm{~J}$
3 $10^{-2} \mathrm{~J}$
4 $10 \mathrm{~J}$
Thermodynamics

148279 A system is taken from state a to state $\mathrm{c}$ by two paths adc and abc as shown in the figure. The internal energy at a is $U_{a}=10 \mathrm{~J}$. Along the path adc the amount of heat absorbed $\delta Q_{1}=50 \mathrm{~J}$ and the work obtained $\delta W_{1}=20 \mathrm{~J}$ whereas along the path abc the heat absorbed $\delta Q_{2}=36 \mathrm{~J}$. The amount of work along the path abc is

1 $10 \mathrm{~J}$
2 $12 \mathrm{~J}$
3 $36 \mathrm{~J}$
4 $6 \mathrm{~J}$
Thermodynamics

148280 Which of the following relations does not give the equation of an adiabatic process where terms have their usual meaning?

1 $\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
2 $\mathrm{PV}^{\gamma}=$ constant
3 $\mathrm{PV}^{\gamma-1}=$ constant
4 $\quad \mathrm{P}^{\gamma} \mathrm{T}^{1-\gamma}=\mathrm{constant}$
Thermodynamics

148272 If the volume of gas is changed from $V_{1}$ to $V_{2}$ isothermally, then work done is :

1 $\mathrm{RT} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
2 $\mathrm{RT} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
3 $\mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \ell \mathrm{n} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
4 $\mathrm{R}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \ell \mathrm{n} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
Thermodynamics

148276 The work done in taking an ideal gas through one cycle of operation as shown in the indicator diagram below.

1 $10^{-5} \mathrm{~J}$
2 $10^{-3} \mathrm{~J}$
3 $10^{-2} \mathrm{~J}$
4 $10 \mathrm{~J}$
Thermodynamics

148279 A system is taken from state a to state $\mathrm{c}$ by two paths adc and abc as shown in the figure. The internal energy at a is $U_{a}=10 \mathrm{~J}$. Along the path adc the amount of heat absorbed $\delta Q_{1}=50 \mathrm{~J}$ and the work obtained $\delta W_{1}=20 \mathrm{~J}$ whereas along the path abc the heat absorbed $\delta Q_{2}=36 \mathrm{~J}$. The amount of work along the path abc is

1 $10 \mathrm{~J}$
2 $12 \mathrm{~J}$
3 $36 \mathrm{~J}$
4 $6 \mathrm{~J}$
Thermodynamics

148280 Which of the following relations does not give the equation of an adiabatic process where terms have their usual meaning?

1 $\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
2 $\mathrm{PV}^{\gamma}=$ constant
3 $\mathrm{PV}^{\gamma-1}=$ constant
4 $\quad \mathrm{P}^{\gamma} \mathrm{T}^{1-\gamma}=\mathrm{constant}$
Thermodynamics

148272 If the volume of gas is changed from $V_{1}$ to $V_{2}$ isothermally, then work done is :

1 $\mathrm{RT} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
2 $\mathrm{RT} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
3 $\mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \ell \mathrm{n} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
4 $\mathrm{R}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \ell \mathrm{n} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
Thermodynamics

148276 The work done in taking an ideal gas through one cycle of operation as shown in the indicator diagram below.

1 $10^{-5} \mathrm{~J}$
2 $10^{-3} \mathrm{~J}$
3 $10^{-2} \mathrm{~J}$
4 $10 \mathrm{~J}$
Thermodynamics

148279 A system is taken from state a to state $\mathrm{c}$ by two paths adc and abc as shown in the figure. The internal energy at a is $U_{a}=10 \mathrm{~J}$. Along the path adc the amount of heat absorbed $\delta Q_{1}=50 \mathrm{~J}$ and the work obtained $\delta W_{1}=20 \mathrm{~J}$ whereas along the path abc the heat absorbed $\delta Q_{2}=36 \mathrm{~J}$. The amount of work along the path abc is

1 $10 \mathrm{~J}$
2 $12 \mathrm{~J}$
3 $36 \mathrm{~J}$
4 $6 \mathrm{~J}$
Thermodynamics

148280 Which of the following relations does not give the equation of an adiabatic process where terms have their usual meaning?

1 $\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
2 $\mathrm{PV}^{\gamma}=$ constant
3 $\mathrm{PV}^{\gamma-1}=$ constant
4 $\quad \mathrm{P}^{\gamma} \mathrm{T}^{1-\gamma}=\mathrm{constant}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

148272 If the volume of gas is changed from $V_{1}$ to $V_{2}$ isothermally, then work done is :

1 $\mathrm{RT} \ln \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
2 $\mathrm{RT} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
3 $\mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \ell \mathrm{n} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
4 $\mathrm{R}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \ell \mathrm{n} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
Thermodynamics

148276 The work done in taking an ideal gas through one cycle of operation as shown in the indicator diagram below.

1 $10^{-5} \mathrm{~J}$
2 $10^{-3} \mathrm{~J}$
3 $10^{-2} \mathrm{~J}$
4 $10 \mathrm{~J}$
Thermodynamics

148279 A system is taken from state a to state $\mathrm{c}$ by two paths adc and abc as shown in the figure. The internal energy at a is $U_{a}=10 \mathrm{~J}$. Along the path adc the amount of heat absorbed $\delta Q_{1}=50 \mathrm{~J}$ and the work obtained $\delta W_{1}=20 \mathrm{~J}$ whereas along the path abc the heat absorbed $\delta Q_{2}=36 \mathrm{~J}$. The amount of work along the path abc is

1 $10 \mathrm{~J}$
2 $12 \mathrm{~J}$
3 $36 \mathrm{~J}$
4 $6 \mathrm{~J}$
Thermodynamics

148280 Which of the following relations does not give the equation of an adiabatic process where terms have their usual meaning?

1 $\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
2 $\mathrm{PV}^{\gamma}=$ constant
3 $\mathrm{PV}^{\gamma-1}=$ constant
4 $\quad \mathrm{P}^{\gamma} \mathrm{T}^{1-\gamma}=\mathrm{constant}$