01. Thermal Expansion (Linear, Area and Volume Expansion)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermal Properties of Matter

146617 The coefficient of real expansion of mercury is $18 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. The thermometer bulb has a volume of $10^{-6} \mathrm{~m}^{3}$ and the cross-section of the stem is $0.002 \mathrm{~cm}^{2}$. Assuming that the bulb is filled with mercury at $0^{\circ} \mathrm{C}$, the length of the mercury column at $100^{\circ} \mathrm{C}$ will be

1 $9 \mathrm{~cm}$
2 $18 \mathrm{~cm}$
3 $9 \mathrm{~mm}$
4 $18 \mathrm{~mm}$
Thermal Properties of Matter

146618 A glass flask of volume $200 \mathrm{~cm}^{3}$ is completely filled with mercury at $20^{\circ} \mathrm{C}$. The amount of mercury that spilt over when the flask is heated to $80^{\circ} \mathrm{C}$ is (coefficient of volume expansion for glass $27 \times 10^{-8} /{ }^{\circ} \mathrm{C}$, mercury $0.18 \times 10^{-8} /{ }^{\circ} \mathrm{C}$ )

1 zero
2 $0.32 \mathrm{~cm}^{3}$
3 $1.84 \mathrm{~cm}^{3}$
4 $2.40 \mathrm{~cm}^{3}$
Thermal Properties of Matter

146619 A steel bridge in a town is $200 \mathrm{~m}$ long. Where minimum temperature in winter is $10^{\circ} \mathrm{C}$ and maximum in summer is $40^{\circ} \mathrm{C}$. The change in length of the bridge from winter to summer is [for steel $\alpha=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ ]

1 $3.3 \mathrm{~cm}$
2 $6.6 \mathrm{~cm}$
3 $6.6 \mathrm{~m}$
4 $8.3 \mathrm{~m}$
Thermal Properties of Matter

146620 If on heating liquid through $80^{\circ} \mathrm{C}$, the mass expelled is $\left(\frac{1}{100}\right)^{\text {th }}$ of mass still remaining, the coefficient of apparent expansion of liquid is

1 $126.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
2 $0.8 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
3 $1.25 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
4 $1.25 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146617 The coefficient of real expansion of mercury is $18 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. The thermometer bulb has a volume of $10^{-6} \mathrm{~m}^{3}$ and the cross-section of the stem is $0.002 \mathrm{~cm}^{2}$. Assuming that the bulb is filled with mercury at $0^{\circ} \mathrm{C}$, the length of the mercury column at $100^{\circ} \mathrm{C}$ will be

1 $9 \mathrm{~cm}$
2 $18 \mathrm{~cm}$
3 $9 \mathrm{~mm}$
4 $18 \mathrm{~mm}$
Thermal Properties of Matter

146618 A glass flask of volume $200 \mathrm{~cm}^{3}$ is completely filled with mercury at $20^{\circ} \mathrm{C}$. The amount of mercury that spilt over when the flask is heated to $80^{\circ} \mathrm{C}$ is (coefficient of volume expansion for glass $27 \times 10^{-8} /{ }^{\circ} \mathrm{C}$, mercury $0.18 \times 10^{-8} /{ }^{\circ} \mathrm{C}$ )

1 zero
2 $0.32 \mathrm{~cm}^{3}$
3 $1.84 \mathrm{~cm}^{3}$
4 $2.40 \mathrm{~cm}^{3}$
Thermal Properties of Matter

146619 A steel bridge in a town is $200 \mathrm{~m}$ long. Where minimum temperature in winter is $10^{\circ} \mathrm{C}$ and maximum in summer is $40^{\circ} \mathrm{C}$. The change in length of the bridge from winter to summer is [for steel $\alpha=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ ]

1 $3.3 \mathrm{~cm}$
2 $6.6 \mathrm{~cm}$
3 $6.6 \mathrm{~m}$
4 $8.3 \mathrm{~m}$
Thermal Properties of Matter

146620 If on heating liquid through $80^{\circ} \mathrm{C}$, the mass expelled is $\left(\frac{1}{100}\right)^{\text {th }}$ of mass still remaining, the coefficient of apparent expansion of liquid is

1 $126.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
2 $0.8 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
3 $1.25 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
4 $1.25 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146617 The coefficient of real expansion of mercury is $18 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. The thermometer bulb has a volume of $10^{-6} \mathrm{~m}^{3}$ and the cross-section of the stem is $0.002 \mathrm{~cm}^{2}$. Assuming that the bulb is filled with mercury at $0^{\circ} \mathrm{C}$, the length of the mercury column at $100^{\circ} \mathrm{C}$ will be

1 $9 \mathrm{~cm}$
2 $18 \mathrm{~cm}$
3 $9 \mathrm{~mm}$
4 $18 \mathrm{~mm}$
Thermal Properties of Matter

146618 A glass flask of volume $200 \mathrm{~cm}^{3}$ is completely filled with mercury at $20^{\circ} \mathrm{C}$. The amount of mercury that spilt over when the flask is heated to $80^{\circ} \mathrm{C}$ is (coefficient of volume expansion for glass $27 \times 10^{-8} /{ }^{\circ} \mathrm{C}$, mercury $0.18 \times 10^{-8} /{ }^{\circ} \mathrm{C}$ )

1 zero
2 $0.32 \mathrm{~cm}^{3}$
3 $1.84 \mathrm{~cm}^{3}$
4 $2.40 \mathrm{~cm}^{3}$
Thermal Properties of Matter

146619 A steel bridge in a town is $200 \mathrm{~m}$ long. Where minimum temperature in winter is $10^{\circ} \mathrm{C}$ and maximum in summer is $40^{\circ} \mathrm{C}$. The change in length of the bridge from winter to summer is [for steel $\alpha=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ ]

1 $3.3 \mathrm{~cm}$
2 $6.6 \mathrm{~cm}$
3 $6.6 \mathrm{~m}$
4 $8.3 \mathrm{~m}$
Thermal Properties of Matter

146620 If on heating liquid through $80^{\circ} \mathrm{C}$, the mass expelled is $\left(\frac{1}{100}\right)^{\text {th }}$ of mass still remaining, the coefficient of apparent expansion of liquid is

1 $126.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
2 $0.8 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
3 $1.25 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
4 $1.25 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146617 The coefficient of real expansion of mercury is $18 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. The thermometer bulb has a volume of $10^{-6} \mathrm{~m}^{3}$ and the cross-section of the stem is $0.002 \mathrm{~cm}^{2}$. Assuming that the bulb is filled with mercury at $0^{\circ} \mathrm{C}$, the length of the mercury column at $100^{\circ} \mathrm{C}$ will be

1 $9 \mathrm{~cm}$
2 $18 \mathrm{~cm}$
3 $9 \mathrm{~mm}$
4 $18 \mathrm{~mm}$
Thermal Properties of Matter

146618 A glass flask of volume $200 \mathrm{~cm}^{3}$ is completely filled with mercury at $20^{\circ} \mathrm{C}$. The amount of mercury that spilt over when the flask is heated to $80^{\circ} \mathrm{C}$ is (coefficient of volume expansion for glass $27 \times 10^{-8} /{ }^{\circ} \mathrm{C}$, mercury $0.18 \times 10^{-8} /{ }^{\circ} \mathrm{C}$ )

1 zero
2 $0.32 \mathrm{~cm}^{3}$
3 $1.84 \mathrm{~cm}^{3}$
4 $2.40 \mathrm{~cm}^{3}$
Thermal Properties of Matter

146619 A steel bridge in a town is $200 \mathrm{~m}$ long. Where minimum temperature in winter is $10^{\circ} \mathrm{C}$ and maximum in summer is $40^{\circ} \mathrm{C}$. The change in length of the bridge from winter to summer is [for steel $\alpha=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ ]

1 $3.3 \mathrm{~cm}$
2 $6.6 \mathrm{~cm}$
3 $6.6 \mathrm{~m}$
4 $8.3 \mathrm{~m}$
Thermal Properties of Matter

146620 If on heating liquid through $80^{\circ} \mathrm{C}$, the mass expelled is $\left(\frac{1}{100}\right)^{\text {th }}$ of mass still remaining, the coefficient of apparent expansion of liquid is

1 $126.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
2 $0.8 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
3 $1.25 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
4 $1.25 \times 10^{-4} /{ }^{\circ} \mathrm{C}$