01. Thermal Expansion (Linear, Area and Volume Expansion)
Thermal Properties of Matter

146577 The change in density of mercury, when it is heated from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ is (The coefficient of volume expansion of mercury is $18.2 \times 10^{-5} \mathrm{~K}^{-1}$ )

1 $1.82 \%$
2 $0.91 \%$
3 $9.1 \%$
4 $0.45 \%$
Thermal Properties of Matter

146578 A steel rod of length $5 \mathrm{~m}$ and radius $2 \mathrm{~cm}$ kept at room temperature is heated to $10^{\circ} \mathrm{C}$ above the room temperature. Then the change in the cross-sectional area of the rod?
(coefficient of linear expansion of steel $=10 \times \left.10^{-6}{ }^0 \mathrm{C}^{-1}\right)$

1 $0.01 \%$
2 $0.02 \%$
3 $0.03 \%$
4 $0.09 \%$
Thermal Properties of Matter

146579 A metal tape is calibrated at $25^{\circ} \mathrm{C}$. On a cold day when the temperature is $-15{ }^{0} \mathrm{C}$, the percentage error in the measurement of length is
(Coefficient of linear expansion of metal $=1 \times$ $\mathbf{1 0}^{-5}{ }^{\circ} \mathbf{C}^{-1}$ )

1 $0.04 \%$
2 $0.05 \%$
3 $0.1 \%$
4 $0.08 \%$
Thermal Properties of Matter

146580 Length of a wire at room temperature is 4.55 $\mathrm{m}$. When the temperature is increased to $100^{\circ} \mathrm{C}$ its length become $4.57 \mathrm{~m}$. Then the coefficient of linear expansion $(\alpha)$ of the given wire is

1 $5.021 \times 10^{-5} \mathrm{~K}^{-1}$
2 $6.021 \times 10^{-5} \mathrm{~K}^{-1}$
3 $7.021 \times 10^{-5} \mathrm{~K}^{-1}$
4 $8.021 \times 10^{-5} \mathrm{~K}^{-1}$
Thermal Properties of Matter

146577 The change in density of mercury, when it is heated from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ is (The coefficient of volume expansion of mercury is $18.2 \times 10^{-5} \mathrm{~K}^{-1}$ )

1 $1.82 \%$
2 $0.91 \%$
3 $9.1 \%$
4 $0.45 \%$
Thermal Properties of Matter

146578 A steel rod of length $5 \mathrm{~m}$ and radius $2 \mathrm{~cm}$ kept at room temperature is heated to $10^{\circ} \mathrm{C}$ above the room temperature. Then the change in the cross-sectional area of the rod?
(coefficient of linear expansion of steel $=10 \times \left.10^{-6}{ }^0 \mathrm{C}^{-1}\right)$

1 $0.01 \%$
2 $0.02 \%$
3 $0.03 \%$
4 $0.09 \%$
Thermal Properties of Matter

146579 A metal tape is calibrated at $25^{\circ} \mathrm{C}$. On a cold day when the temperature is $-15{ }^{0} \mathrm{C}$, the percentage error in the measurement of length is
(Coefficient of linear expansion of metal $=1 \times$ $\mathbf{1 0}^{-5}{ }^{\circ} \mathbf{C}^{-1}$ )

1 $0.04 \%$
2 $0.05 \%$
3 $0.1 \%$
4 $0.08 \%$
Thermal Properties of Matter

146580 Length of a wire at room temperature is 4.55 $\mathrm{m}$. When the temperature is increased to $100^{\circ} \mathrm{C}$ its length become $4.57 \mathrm{~m}$. Then the coefficient of linear expansion $(\alpha)$ of the given wire is

1 $5.021 \times 10^{-5} \mathrm{~K}^{-1}$
2 $6.021 \times 10^{-5} \mathrm{~K}^{-1}$
3 $7.021 \times 10^{-5} \mathrm{~K}^{-1}$
4 $8.021 \times 10^{-5} \mathrm{~K}^{-1}$
Thermal Properties of Matter

146577 The change in density of mercury, when it is heated from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ is (The coefficient of volume expansion of mercury is $18.2 \times 10^{-5} \mathrm{~K}^{-1}$ )

1 $1.82 \%$
2 $0.91 \%$
3 $9.1 \%$
4 $0.45 \%$
Thermal Properties of Matter

146578 A steel rod of length $5 \mathrm{~m}$ and radius $2 \mathrm{~cm}$ kept at room temperature is heated to $10^{\circ} \mathrm{C}$ above the room temperature. Then the change in the cross-sectional area of the rod?
(coefficient of linear expansion of steel $=10 \times \left.10^{-6}{ }^0 \mathrm{C}^{-1}\right)$

1 $0.01 \%$
2 $0.02 \%$
3 $0.03 \%$
4 $0.09 \%$
Thermal Properties of Matter

146579 A metal tape is calibrated at $25^{\circ} \mathrm{C}$. On a cold day when the temperature is $-15{ }^{0} \mathrm{C}$, the percentage error in the measurement of length is
(Coefficient of linear expansion of metal $=1 \times$ $\mathbf{1 0}^{-5}{ }^{\circ} \mathbf{C}^{-1}$ )

1 $0.04 \%$
2 $0.05 \%$
3 $0.1 \%$
4 $0.08 \%$
Thermal Properties of Matter

146580 Length of a wire at room temperature is 4.55 $\mathrm{m}$. When the temperature is increased to $100^{\circ} \mathrm{C}$ its length become $4.57 \mathrm{~m}$. Then the coefficient of linear expansion $(\alpha)$ of the given wire is

1 $5.021 \times 10^{-5} \mathrm{~K}^{-1}$
2 $6.021 \times 10^{-5} \mathrm{~K}^{-1}$
3 $7.021 \times 10^{-5} \mathrm{~K}^{-1}$
4 $8.021 \times 10^{-5} \mathrm{~K}^{-1}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermal Properties of Matter

146577 The change in density of mercury, when it is heated from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ is (The coefficient of volume expansion of mercury is $18.2 \times 10^{-5} \mathrm{~K}^{-1}$ )

1 $1.82 \%$
2 $0.91 \%$
3 $9.1 \%$
4 $0.45 \%$
Thermal Properties of Matter

146578 A steel rod of length $5 \mathrm{~m}$ and radius $2 \mathrm{~cm}$ kept at room temperature is heated to $10^{\circ} \mathrm{C}$ above the room temperature. Then the change in the cross-sectional area of the rod?
(coefficient of linear expansion of steel $=10 \times \left.10^{-6}{ }^0 \mathrm{C}^{-1}\right)$

1 $0.01 \%$
2 $0.02 \%$
3 $0.03 \%$
4 $0.09 \%$
Thermal Properties of Matter

146579 A metal tape is calibrated at $25^{\circ} \mathrm{C}$. On a cold day when the temperature is $-15{ }^{0} \mathrm{C}$, the percentage error in the measurement of length is
(Coefficient of linear expansion of metal $=1 \times$ $\mathbf{1 0}^{-5}{ }^{\circ} \mathbf{C}^{-1}$ )

1 $0.04 \%$
2 $0.05 \%$
3 $0.1 \%$
4 $0.08 \%$
Thermal Properties of Matter

146580 Length of a wire at room temperature is 4.55 $\mathrm{m}$. When the temperature is increased to $100^{\circ} \mathrm{C}$ its length become $4.57 \mathrm{~m}$. Then the coefficient of linear expansion $(\alpha)$ of the given wire is

1 $5.021 \times 10^{-5} \mathrm{~K}^{-1}$
2 $6.021 \times 10^{-5} \mathrm{~K}^{-1}$
3 $7.021 \times 10^{-5} \mathrm{~K}^{-1}$
4 $8.021 \times 10^{-5} \mathrm{~K}^{-1}$